本文目录一览

1,什么是聚类分析聚类算法有哪几种

聚类分析的算法可以分为以下几大类:分裂法、层次法、基于密度的方法、基于网格的方法和基于模型的方法等。
聚类分析是分类算法中的一种,是无监督的,不需要训练。聚类算法分为:硬聚类算法和软聚类算法,硬聚类中最经典的是K均值聚类算法,就是大家所说的K-means算法,软聚类算法中最经典的是模糊C均值聚类算法,就是FCM。后续的一些聚类算法都是在这两种上改进的

什么是聚类分析聚类算法有哪几种

2,unsupervised hierarchical cluster是什么意思

unsupervised hierarchical cluster无监督聚类双语例句1After modeling, an unsupervised hierarchical clustering algorithm is applied to cluster all users in wireless network based on weighted similarity.在对用户和社会关系建模后,采用基于加权相似度的非监督层次化聚类算法,对全网用户进行聚类分析。
没看懂什么意思?

unsupervised hierarchical cluster是什么意思

3,机器学习非监督机器学习算法有哪些

非监督机器学习可以分为以下几类(1)聚类:K-均值聚类、谱聚类、DBSCAN聚类、模糊聚类、GMM聚类、层次聚类等(2)降维:PCA、t-SNE、MDS等(3)其它:PageRank、SOM等详细介绍可以参考图书:The Elements of Statistical Learning的第14章
maxsoft作为logistics二分类的改进版,天生适合多分类;神经网络(如bp神经网络,随机权神经网络,rbf神经网络等);通过建立多个支持向量机或者最小二乘支持向量机分类模型,通过投票算法选择概率最大的分类标签;也可以通过聚类算法(knn,kmeans等)等无监督学习算法实现分类。或许不太完善,欢迎补充。(机器学习算法与python学习)

机器学习非监督机器学习算法有哪些

4,非监督分类的具体概念

非监督分类是指人们事先对分类过程不施加任何的先验知识,而仅凭数据(遥感影像地物的光谱特征的分布规律),即自然聚类的特性,进行“盲目”的分类;其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性,亦即:非监督分类只能把样本区分为若干类别,而不能给出样本的描述;其类别的属性是通过分类结束后目视判读或实地调查确定的。非监督分类也称聚类分析。一般的聚类算法是先选择若干个模式点作为聚类的中心。每一中心代表一个类别,按照某种相似性度量方法(如最小距离方法)将各模式归于各聚类中心所代表的类别,形成初始分类。然后由聚类准则判断初始分类是否合理,如果不合理就修改分类,如此反复迭代运算,直到合理为止。与监督法的先学习后分类不同,非监督法是边学习边分类,通过学习找到相同的类别,然后将该类与其它类区分开,但是非监督法与监督法都是以图像的灰度为基础。通过统计计算一些特征参数,如均值,协方差等进行分类的。所以也有一些共性。
程辐射的定义
推荐你看看这个: http://wenku.baidu.com/view/d5de3600a6c30c2259019ec6.html有很多论文是关于监督分类和非监督分类的,你用校园网里看看查查

5,为什么说聚类分析是一种无监督的学习方法

聚类分析:对样品或指标进行分类的一种分析方法,依据样本和指标已知特性进行分类。本节主要介绍层次聚类分析,一共包括3个部分,每个部分包括一个具体实战例子。1、常规聚类过程:一、首先用dist()函数计算变量间距离dist.r = dist(data, method=" ") 其中method包括6种方法,表示不同的距离测度:"euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski"。相应的意义自行查找。二、再用hclust()进行聚类hc.r = hclust(dist.r, method = “ ”) 其中method包括7种方法,表示聚类的方法:"ward", "single", "complete","average", "mcquitty", "median" or "centroid"。相应的意义自行查找。三、画图plot(hc.r, hang = -1,labels=NULL) 或者plot(hc.r, hang = 0.1,labels=F)hang 等于数值,表示标签与末端树杈之间的距离,若是负数,则表示末端树杈长度是0,即标签对齐。labels 表示标签,默认是NULL,表示变量原有名称。labels=F :表示不显示标签。

6,什么是无监督学习

无监督学习(unsupervised learning):设计分类器时候,用于处理未被分类标记的样本集目标是我们不告诉计算机怎么做,而是让它(计算机)自己去学习怎样做一些事情。非监督学习一般有两种思路。第一种思路是在指导Agent时不为其指定明确的分类,而是在成功时采用某种形式的激励制度。需要注意的是,这类训练通常会置于决策问题的框架里,因为它的目标不是产生一个分类系统,而是做出最大回报的决定。这种思路很好的概括了现实世界,Agent可以对那些正确的行为做出激励,并对其他的行为进行处罚。强化学习的一些形式常常可以被用于非监督学习,由于没有必然的途径学习影响世界的那些行为的全部信息,因此Agent把它的行为建立在前一次奖惩的基础上。在某种意义上,所有的这些信息都是不必要的,因为通过学习激励函数,Agent不需要任何处理就可以清楚地知道要做什么,因为它(Agent)知道自己采取的每个动作确切的预期收益。对于防止为了计算每一种可能性而进行的大量计算,以及为此消耗的大量时间(即使所有世界状态的变迁概率都已知),这样的做法是非常有益的。另一方面,在尝试出错上,这也是一种非常耗费时间的学习。不过这一类学习可能会非常强大,因为它假定没有事先分类的样本。在某些情况下,例如,我们的分类方法可能并非最佳选择。在这方面一个突出的例子是Backgammon(西洋双陆棋)游戏,有一系列计算机程序(例如neuro-gammon和TD-gammon)通过非监督学习自己一遍又一遍的玩这个游戏,变得比最强的人类棋手还要出色。这些程序发现的一些原则甚至令双陆棋专家都感到惊讶,并且它们比那些使用预分类样本训练的双陆棋程序工作得更出色。一种次要的非监督学习类型称之为聚合(clustering)。这类学习类型的目标不是让效用函数最大化,而是找到训练数据中的近似点。聚合常常能发现那些与假设匹配的相当好的直观分类。例如,基于人口统计的聚合个体可能会在一个群体中形成一个富有的聚合,以及其他的贫穷的聚合。
首先看什么是学习(learning)?一个成语就可概括:举一反三。此处以高考为例,高考的题目在上考场前我们未必做过,但在高中三年我们做过很多很多题目,懂解题方法,因此考场上面对陌生问题也可以算出答案。机器学习的思路也类似:我们能不能利用一些训练数据(已经做过的题),使机器能够利用它们(解题方法)分析未知数据(高考的题目)?最简单也最普遍的一类机器学习算法就是分类(classification)。对于分类,输入的训练数据有特征(feature),有标签(label)。所谓的学习,其本质就是找到特征和标签间的关系(mapping)。这样当有特征而无标签的未知数据输入时,我们就可以通过已有的关系得到未知数据标签。在上述的分类过程中,如果所有训练数据都有标签,则为有监督学习(supervised learning)。如果数据没有标签,显然就是无监督学习(unsupervised learning)了,也即聚类(clustering)。

文章TAG:监督  聚类  什么  聚类分析  无监督聚类  
下一篇