本文目录一览

1,逻辑汉书及布尔代数的基本概念

本人才疏学浅,没听说过“逻辑汉书”……描述输入逻辑变量和输出逻辑变量之间的因果关系称为“逻辑函数”。至于布尔代数(即逻辑代数),你上网搜一下普通代数的概念,再补充:变量的值只能取0或1,这里,0和1并不表示数量大小,而是用来表示完全对立的逻辑状态。就行了!

逻辑汉书及布尔代数的基本概念

2,布尔代数的介绍

布尔代数起源于数学领域,是一个用于集合运算和逻辑运算的公式:〈B,∨,∧,? 〉。其中B为一个非空集合,∨,∧为定义在B上的两个二元运算,?为定义在B上的一个一元运算。通过布尔代数进行集合运算可以获取到不同集合之间的交集、并集或补集,进行逻辑运算可以对不同集合进行与、或、非。

布尔代数的介绍

3,布尔代数的运算法则是什么大神们帮帮忙

在布尔代数上的运算被称为AND(与)、OR(或)和NOT(非)。代数结构要是布尔代数,这些运算的行为就必须和两元素的布尔代数一样(这两个元素是TRUE(真)和FALSE(假))。亦称逻辑代数.布尔(Boole,G.)为研究思维规律(逻辑学)于1847年提出的数学工具.布尔代数是指代数系统B=〈B,+,·,′〉它包含集合B连同在其上定义的两个二元运算+,·和一个一元运算′,布尔代数具有下列性质:对B中任意元素a,b,c,有:1.a+b=b+a, a·b=b·a.2.a·(b+c)=a·b+a·c,a+(b·c)=(a+b)·(a+c).3.a+0=a, a·1=a.4.a+a′=1, a·a′=0.布尔代数也可简记为B=〈B,+,·,′〉.在不致混淆的情况下,也将集合B称作布尔代数.布尔代数B的集合B称为布尔集,亦称布尔代数的论域或定义域,它是代数B所研究对象的全体.一般要求布尔集至少有两个不同的元素0和1,而且其元素对三种运算+,·,′ 都封闭,因此并非任何集合都能成为布尔集.在有限集合的情形,布尔集的元素个数只能是2n,n=0,1,2,…二元运算+称为布尔加法,布尔和,布尔并,布尔析取等;二元运算·称为布尔乘法,布尔积,布尔交,布尔合取等;一元运算 ′ 称为布尔补,布尔否定,布尔代数的余运算等.布尔代数的运算符号也有别种记法,如∪,∩,-;∨,∧,?等.由于只含一个元的布尔代数实用价值不大,通常假定0≠1,称0为布尔代数的零元素或最小元,称1为布尔代数的单位元素或最大元.布尔代数通常用亨廷顿公理系统来定义,但也有用比恩公理系统或具有0与1的有补分配格等来定义的。

布尔代数的运算法则是什么大神们帮帮忙

4,布尔代数布尔代数是什么意思

所谓一个布尔代数,是指一个有序的四元组〈B,∨,∧,*〉,其中B是一个非空的集合,∨与∧是定义在B上的两个二元运算,*是定义在B上的一个一元运算,并且它们满足一定的条件。以布尔值(或称逻辑值)为基本研究对象并以此延伸至相关研究方向的一门数学学科。布尔值有两个,真(用1表示)和假(用0表示)。布尔值的基本运算是基本逻辑运算,如:逻辑与,逻辑或,逻辑非,异或,同或等等。有自己的一套概念如最大项、最小项、卡诺图、反演律、吸收律之类。例子最简单的布尔代数只有两个元素 0 和 1,并通过如下规则定义:∧ 0 10 0 01 0 1∨ 0 10 0 11 1 1它应用于逻辑中,解释 0 为假,1 为真,∧ 为与,∨ 为或,? 为非。 涉及变量和布尔运算的表达式代表了陈述形式,两个这样的表达式可以使用上面的公理证实为等价的,当且仅当对应的陈述形式是逻辑等价的。两元素的布尔代数也是在电子工程中用于电路设计;这里的 0 和 1 代表数字电路中一个位的两种不同状态,典型的是高和低电压。电路通过包含变量的表达式来描述,两个这种表达式对这些变量的所有的值是等价的,当且仅当对应的电路有相同的输入-输出行为。此外,所有可能的输入-输出行为都可以使用合适的布尔表达式来建摸。两元素布尔代数在布尔代数的一般理论中也是重要的,因为涉及多个变量的等式是在所有布尔代数中普遍真实的,当且仅当它在两个元素的布尔代数中是真实的(这总是可以通过平凡的蛮力算法证实)。比如证实下列定律(合意(Consensus)定理)在所有布尔代数中是普遍有效的:(a ∨ b) ∧ (?a ∨ c) ∧ (b ∨ c) ≡ (a ∨ b) ∧ (?a ∨ c)(a ∧ b) ∨ (?a ∧ c) ∨ (b ∧ c) ≡ (a ∧ b) ∨ (?a ∧ c)任何给定集合 S 的幂集(子集的集合)形成有两个运算 ∨ := ∪ (并)和 ∧ := ∩ (交)的布尔代数。最小的元素 0 是空集而最大元素 1 是集合 S 自身。有限的或者 cofinite 的集合 S 的所有子集的集合是布尔代数。对于任何自然数 n,n 的所有正约数的集合形成一个分配格,如果我们对 a | b 写 a ≤ b。这个格是布尔代数当且仅当 n 是无平方因子的。这个布尔代数的最小的元素 0 是自然数 1;这个布尔代数的最大元素 1 是自然数 n。布尔代数的另一个例子来自拓扑空间: 如果 X 是一个拓扑空间,它既是开放的又是闭合的,X 的所有子集的搜集形成有两个运算 ∨ := ∪ (并)和 ∧ := ∩ (交)的布尔代数。如果 R 是一个任意的环,并且我们定义中心幂等元(central idempotent)的集合为A = 则集合 A 成为有两个运算 e ∨ f := e + f + ef 和 e ∧ f := ef 的布尔代数。希望帮到你 望采纳 谢谢 加油

文章TAG:布尔代数  逻辑汉书及布尔代数的基本概念  
下一篇