本文目录一览

1,超声波检测的基本原理是什么

超声波方向性好,穿透能力强,能够传递信息,易于获得较集中的声能,在水中传播距离远。

超声波检测的基本原理是什么

2,超声波的物理原理是什么

如果你是初中学生,就回答:超声波穿透性很强,且,声音能传递信息 希望对你有帮助 声音沿直线传播 超声波检测的原理是:超声波具有很强的穿透性

超声波的物理原理是什么

3,求超声波测速原理

1、用超声波测距,然后根据时间差计算速度,一般用于测试速度不是太快的,如汽车速度;2、根据多普勒频移原理测速,一般测试速度较快的,如运动的网球;楼上的行家说的对,观点我基本认同。不过,题目是:求超声波测速原理?所以就原理而言,超声波测车速是没问题的,和实际应用是两个概念,要是使用中如楼上所说,确实危险,也不现实。另外,超声波空气中衰减是大,但是,测50-60米是没问题的,30m肯定不止的,而其他测速方式也是在一定距离内测,不是无限远的。至于反射面的问题,因车表面不规则,不一定非得垂直的,如果因这个说回波小,微雷达波也是同样存在的。
适合作流动物质中含有较多杂质的流体的流速测量,超声多普勒法只是其中一种 ,还有频差法和时差法等等。 时差法测量沿流体流动的正反两个不同方向发射的超声播到达接收端的时差。需要突出解决的难题是这种情况下,由于声速参加运算(作为分母,公式不好写,我积分不够没法贴图),而声速收温度的影响变化较大,所以不适合用在工业环境下等温度变化范围大的地方。 频差法是时差法的改进,可以把分母上的声速转换到分子上,然后在求差过程中约掉,这就可以避开声速随温度变化的影响,但测频由于存在正负1误差,对于精度高的地方,需要高速计数器。 还有就是回鸣法了,可以有效改进由于计数器正负1误差带来的测量误差。 以上这些东东都是关于流体的流速的超声测量方法。对于移动物体的速度测量多采用超声多谱勒法。 根据声学多普勒效应,当向移动物体发射频率为f的连续超声波时,被移动物体反射的超声波频率为f,f与f服从多普勒关系。如果超声发射方向和移动物体的夹角已知,就可以通过多普勒关系的v,f,f,c表达式得出物体移动速度v。

求超声波测速原理

4,医学超声动检查是用什么原理

简而言之,是通过超声波在不同组织中的反射不同来辨别组织,随着科学发展,超声检查在心脏、腹部、四肢血管,浅表器官,颈部血管等方面有优势。心脏彩超还是很准确的。当然,由于超声检查是由超声医师在显示器上辨别病变,并出具报告,所以准确以否与超声医师的经验和水平有关。
超声影像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析、处理和显象,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创伤性检查方式。 正常人的耳朵可接听到声波频率的范围为16-20000hz,高于2万赫兹的声波就称为超声波。超声医学影像所用的声频率通常是300万-750万次/秒(3mhz-7.5mhz)。超声波是一种机械波,其传播是通过介质中粒子的机械振动进行的,它不同于电磁波,在真空中不能传播,但在人体复杂的介质中传播较好,同时它属直线传播,因此有良好的方向性。超声波具有反射、折射与散射等较为独特的一些物理特性。当超声波在介质的传播过程中,遇到两种在密度和声速上均不相同的介质,在其交界面上即产生声阻抗,从而发生声波的反射与折射等现象。就比如一个人朝着山间空谷大喊大叫时,所听到的山谷回音;以及早期的雷达扫描在朝某一定点方向发射声波,遇到飞机或其他物体即产生原方向上的反射波,被雷达站接收后即可判断有无物体接近及其距离等信息。这些都是利用波的反射原理。同样,人体是一个复杂的有机整体,人体内分布有许许多多各不相同的组织和器官结构,它们对超声波存在着不同的声阻抗,从而当超声波通过人体某些部位和器官时,在不同组织大大小小的相邻界面上产生各不相同的反射、折射、散射与衍射等,这些信息被特殊的仪器接收后通过电子计算机等电子工程技术处理后以一定的特殊形式显示出来,医务人员通过对比可疑病患者与正常人体相同部位或器官的以上各种超声波信息之后,判断该可疑病患者其检查部位或器官是否存在异常病变并做出诊断。 目前,由于超声显像技术具有实时动态、灵敏度高、易操作、无创伤、无特殊禁忌症、可重复性强、费用低廉和无放射性损伤等优点。从而使这一诊断技术成为了现今临床各学科疾病的检查、诊断和介入治疗中所不可缺的重要手段之一。

5,谁知道超声波的工作原理啊

超声波工作原理:超声波清洗原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡在声场的作用下振动,当声压达到一定值时,气泡迅速增大,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压,破坏不溶性污物而使他们分散于清洗液中,当团体粒子被油污裹着而黏附在 清洗件表面是,油被乳化,固体粒子及脱离,从而达到清洗件净化的目的,且通过其空化作用达到洗盲脚的作用。超声波的危害:超声波在生物体内传播时,通过组织间的相互作用,导致生物体机能和结构变化,称为超声波的生物效应,产生生物效应的机制是热效应和空化效应。 所谓的热效应是指超声波传播过程中,部分能量被生物组织吸收转变为热能,使组织温度增高;空化效应是指超声波传播过程中与组织中的气核或微气泡相互作用,使其突然爆破,产生巨大的瞬间压力,使组织内部结构改变。 低剂量超声是潜在的致癌与致畸形因素,而且不同频率、不同声强对不同个体有一定危害。因为超声波对固体和液体都有很强的穿透本领,能量较大时可以使物质微粒作高频振动,部分能量还可以转变为热能,使局部温度升高。高强度的脉冲超声波在含有微米级小气泡的液体中传播时,可导致气泡收缩、膨胀以至猛烈爆炸,这种现象称为“空化现象”。不久前美国著名超生物物理专家卡斯坦森指出,某些临床使用的超声图像诊断仪的最大输出强度已达1千瓦/平方厘米,这个强度足以使生物体产生瞬态空化现象。对生物体来说,瞬态空化作用时,靠近爆炸气泡附近的细胞会受到损伤,一般说来,在人体内大多数器官和生物流体中,损伤少量细胞不会对人体产生危害。超声波对人体危害的原理:超声波对人体危害的原理是,超声波在生物体内传播时,通过组织间的相互作用,导致生物体机能和结构变化,称为超声波的生物效应,产生生物效应的机制是热效应和空化效应。 所谓的热效应是指超声波传播过程中,部分能量被生物组织吸收转变为热能,使组织温度增高;空化效应是指超声波传播过程中与组织中的气核或微气泡相互作用,使其突然爆破,产生巨大的瞬间压力,使组织内部结构改变。
原理: 超声波测速仪每隔一相等时间,发出一超声脉冲信号,每隔一段时间接收到一经汽车反射回的该超声脉冲信号,若汽车匀速行驶,则间隔时间相同,根据发出和接收到的信号间的时间间隔差和声速,测出被测汽车的速度。 和雷达有些相似。

6,B超成像原理

原发布者:mcukljyB超原理B超成像的基本原理就是:向人体发射一组超声波,按一定的方向进行扫描。根据监测其回声的延迟时间,强弱就可以判断脏器的距离及性质。经过电子电路和计算机的处理,形成了我们今天的B超图像。B超的关键部件就是我们所说的超声探头(probe),其内部有一组超声换能器,是由一组具有压电效应的特殊晶体制成。这种压电晶体具有特殊的性质,就是在晶体特定方向上加上电压,晶体会发生形变,反过来当晶体发生形变时,对应方向上就会产生电压,实现了电信号与超声波的转换。下面是一个B超的一般原理图:一般的B超工作过程为:当探头获得激励脉冲后发射超声波,(同时探头受聚焦延迟电路控制,实现声波的声学聚焦。)然后经过一段时间延迟后再由探头接受反射回的回声信号,探头接收回来的回声信号经过滤波,对数放大等信号处理。然后由DSC电路进行数字变换形成数字信号,在CPU控制下进一步进行图像处理,再同图表形成电路和测量电路一起合成视频信号送给显示器形成我们所熟悉的B超图像,也称二维黑白超声图像。以上我们谈到了黑白B超,再让我们谈谈彩色B超,即”彩超”。其实彩超并不是看到了人体组织的真正的颜色,而是在黑白B超图像基础上加上以多普勒效应原理为基础的伪彩而形成的。那么何谓多普勒效应呢,当我们站在火车站台上听有远处开来的火车笛叫声会比远离我们的火车笛叫声音调要高,也就是说对于静止的观测者来说,向着观测者运动物体发出的声波频率会升高,相反频率会降低,这
之所以B超叫做B超,是因为还存在一个A超,A超和B超都很常见,只不过A超用于工业探伤,常人无法看见。A型超声波使用点型超声反射,B型使用面型超声反射,A型主要使用示波器来观察波形,B型要使用计算机将反射回来的信号进行处理后才能显示
百度百科
b超成像的基本原理就是:向人体发射一组超声波,按一定的方向进行扫描。根据监测其回声的延迟时间,强弱就可以判断脏器的距离及性质。经过电子电路和计算机的处理, 形成了我们今天的b超图像。b超的关键部件就是我们所说的超声探头 (probe),其内部有一组超声换能器,是由一组具有压电效应的特殊晶体制成。这种压电晶体具有特殊的性质,就是在晶体特定方向上加上电压,晶体会发生形变,反过来当晶体发生形变时,对应方向上就会产生电压,实现了电信号与超声波的转换 一般的b超工作过程为: 当探头获得激励脉冲后发射超声波, (同时探头受聚焦延迟电路控制,实现声波的声学聚焦。) 然后经过一段时间延迟后再由探头接受反射回的回声信号,探头接收回来的回声信号经过滤波,对数放大等信号处理。然后由dsc电路进行数字变换形成数字信号,在cpu控制下进一步进行图像处理, 再同图表形成电路和测量电路一起合成视频信号送给显示器形成我们所熟悉的b超图像,也称二维黑白超声图像

文章TAG:超声  原理  超声波  超声波检测  超声原理  
下一篇