本文目录一览

1,NLG和FRF是哪两个国家的货币

法国法郎(FRF),1欧元约6.5596法郎,1法郎约1.5245人民币. 荷兰盾(NLG),不过已经废弃了,不是合法货币。
分别是荷兰盾和法郎 就是荷兰和法国的货币

NLG和FRF是哪两个国家的货币

2,nlg是什么意思

英语缩略词“NLG”经常作为“Nitrogen And Light Gases”的缩写来使用,中文表示:“氮气和轻气体”。NLG”(“氮气和轻气体)释义英文缩写词:NLG英文单词:Nitrogen And Light Gases缩写词中文简要解释:氮气和轻气体中文拼音:dàn qì hé qīng qì tǐ缩写词流行度:4428缩写词分类:Academic & Science缩写词领域:Chemistry

nlg是什么意思

3,荷兰盾10元是中国的多少

10 荷兰盾(NLG) = 40.169 人民币(CNY)1 荷兰盾(NLG) = 4.0169 人民币(CNY)
1荷兰盾=4.6723元人民币 10荷兰盾 =46.723元人民币

荷兰盾10元是中国的多少

4,人民币国际英文缩写是什么

人民币国际英文缩写是CNY。国际上一般称人民币为Chinese Yuan,直译过来就是“中国元”,所以在国际上,人民币的缩写是“CNY”,并不是常说的RMB。这两种缩写在意思和表达上没有区别,应用范围不同,国际贸易和银行里,人民币只能用CNY,但企业内部会计很多都是用RMB。常见各国货币的缩写1、USD(U.S. Dollar):美元。2、FRF(French Franc):法郎。3、HKD(HongKong Dollar):港元。4、USD(United States Dollar):美元。5、CAD(Canadian Dollar):加拿大元。6、CHF(schweizer Franken):瑞士法郎。7、GBP(GreatBritain Pound):英镑。8、NLG(NetherLandish Guilder):荷兰盾。9、DEM(德文DEutsche M ark):德国马克。10、JPY(JaPanese Yen):日元。11、AUD(AUstralian Dollar):澳大利亚元。

5,利用自然语言生成NLG对测试序列生成进行软件实现CCC

if(i%8 == 0) printf("\n");如果i除8取的余数为0 然后就打印,你看到的是一个换行即20/5=4余数就是0 //可以20/6=3余2 //不可以
上QQ。再看看别人怎么说的。

6,自然语言处理几个概念

自然语言处理(NLP)是指机器理解并解释人类写作、说话方式的能力。 NLP 的目标是让计算机/机器在理解语言上像人类一样智能。最终目标是弥补人类交流(自然语言)和计算机理解(机器语言)之间的差距。 自然语言处理(Natural Language Processing,简称NLP)是人工智能的一个子域。自然语言处理的应用包括机器翻译、情感分析、智能问答、信息提取、语言输入、舆论分析、知识图谱等方面,也是深度学习的一个分支。 在这个概念下还有两大子集,即自然语言理解(Natural Language Understanding,简称NLU)与自然语言生成(Natural Language Generation,简称NLG) 套用百度的一张图片展示它们的关系如下 (1)最底部,是最基础的大数据、机器学习和语言学(Linguistics); (2)往上看,是知识图谱(Knowledge Graph),其中包含了实体图谱、注意力图谱和意图图谱。 (3)再上一层,左侧是语言理解(Language Understanding),右侧是语言生成(Language Generation) ——语言理解,包含了Query理解、文本理解、情感分析(Sentiment Analysis)等,还有词法(Lexical)、句法(Syntax)和语义(Semantic)等不同层次的分析。 ——语言生成,包含了写作、阅读理解等等。 (4)最上方,是系统层面,包含了问答系统、机器翻译和对话系统。 自然语言处理是理解给定文本的含义与结构的流程。 文本挖掘或文本分析是通过模式识别提起文本数据中隐藏的信息的流程。 自然语言处理被用来理解给定文本数据的含义(语义),而文本挖掘被用来理解给定文本数据的结构(句法)。 例如,在「I found my wallet near the bank」一句中,NLP 的任务是理解句尾「bank」一词指代的是银行还是河边。 由于自然语言是人类区别于其他动物的根本标志。没有语言,人类的思维也就无从谈起,所以自然语言处理体现了人工智能的最高任务与境界,也就是说,只有当计算机具备了处理自然语言的能力时,机器才算实现了真正的智能。 事实上,“人工智能”被作为一个研究问题正式提出来的时候,创始人把计算机国际象棋和机器翻译作为两个标志性的任务,认为只要国际象棋系统能够打败人类世界冠军,机器翻译系统达到人类翻译水平,就可以宣告人工智能的胜利。四十年后的1997年,IBM公司的深蓝超级计算机 已经能够打败国际象棋世界冠军卡斯帕罗夫。而机器翻译到现在仍无法与人类翻译水平相比,从此可以看出自然语言处理有多么困难! 一句话总结就是,语言是文明的标志,是人类思维逻辑和情感线索的载体,自然语言处理正是人工智能的最高境界。 (1)单词的边界界定 在口语中,词与词之间通常是连贯的,而界定字词边界通常使用的办法是取用能让给定的上下文最为通顺且在文法上无误的一种最佳组合。在书写上,汉语也没有词与词之间的边界。 (2)词义的消歧 许多字词不单只有一个意思,因而我们必须选出使句意最为通顺的解释。 (3)句法的模糊性 自然语言的文法通常是模棱两可的,针对一个句子通常可能会剖析(Parse)出多棵剖析树(Parse Tree),而我们必须要仰赖语意及前后文的资讯才能在其中选择一棵最为适合的剖析树。 (4)有瑕疵的或不规范的输入 例如语音处理时遇到外国口音或地方口音,或者在文本的处理中处理拼写,语法或者光学字符识别(OCR)的错误。 (5)语言行为与计划 句子常常并不只是字面上的意思,例如,“你能把盐递过来吗”,一个好的回答应当是把盐递过去,在大多数上下文环境中,“能”将是糟糕的回答,虽说回答“不”或者“太远了我拿不到”也是可以接受的。再者,如果一门课程去年没开设,对于提问“这门课程去年有多少学生没通过?”回答“去年没开这门课”要比回答“没人没通过”好。 (1)NLU 旨在让机器理解自然语言形式的文本内容。 从 NLU 处理的文本单元来讲,可以分为词(term)、句子(sentence)、文档(document)三种不同的类型: ---词层面的基础 NLU 领域包括分词(汉语、缅甸语、泰语等非拉丁语系语言需要)、词性标注(名词、动词、形容词等)、命名实体识别(人物、机构、地点等)和实体关系提取(例如人物-出生地关系、公司-所在地关系、公司收购关系等); ---句子层面的基础 NLU 领域包括句法结构解析(获取句子的句法结构)和依存关系解析(获取句子组成部分的依赖关系); ---文档层面的基础 NLU 领域包含情感分析(分析一篇文档的情感倾向)和主题建模(分析文档内容的主题分布)。 (2)与NLU不同,NLG旨在让机器根据确定的结构化数据、文本、音视频等生成人类可以理解的自然语言形式的文本。根据数据源的类型,NLG可以分为三类: ---Text to text NLG,主要是对输入的自然语言文本进行进一步的处理和加工,主要包含文本摘要(对输入文本进行精简提炼)、拼写检查(自动纠正输入文本的单词拼写错误)、语法纠错(自动纠正输入文本的句法错误)、机器翻译(将输入文本的语义以另一种语言表达)和文本重写(以另一种不同的形式表达输入文本相同的语义)等领域; ---Data to text NLG,主要是根据输入的结构化数据生成易读易理解的自然语言文本,包含天气预报(根据天气预报数据生成概括性的用于播报的文本)、金融报告(自动生成季报/年报)、体育新闻(根据比分信息自动生成体育新闻)、人物简历(根据人物结构化数据生成简历)等领域的文本自动生成; ---Vision to text NLG,主要是给定一张图片或一段视频,生成可以准确描述图片或视频(其实是连续的图片序列)语义信息的自然语言文本。 下面重点说下NLG 技术的能力边界: NLG 技术,一个核心在于NL,即自然语言形式的文本,更易于普通人阅读;另一个核心在于G,即生成,但不是创作,不涉及深入地分析、提炼和推理。 在 Text to text NLG 中,本质上是将输入文本进行处理,映射到一个语义向量空间中,然后再用输出文本来表达同样的语义,而这一过程中语义信息本身并没有经过进一步加工。 Data to text NLG 的目的是将结构化数据嵌入自然语言文本中,便于普通人的快速阅读,即使有一些看似推理的结果(例如天气预报中根据下周七天的天气数据,输出「未来一周大部分时间晴好,仅周三有短时小雨」这样的文本),其实也是人为定义了新的结构化数据字段。 Vision to text NLG 中也是如此,只是用自然语言文本来表达原先图像表达的语义,也不涉及语义的进一步加工。 换句话说,目前的 NLG 技术并不能实现人类的「写作」过程 - 其中包括对大量输入信息的理解、提炼、分析、推理和重组,而仅能够给出输入信息(文本、数据和图像)的自然语言形式的表示。 NLG 技术生成的文本,单篇文本看起来会非常规范和优质,但把大量的生成文本放在一起,就会感觉出浓浓的机器味儿 - 更为模式化且缺少灵活性。 NLP是AI的最大瓶颈,语言生成是NLP的最前沿

7,50元荷兰币大概是人民币多少

人民币兑荷兰盾当日即时汇率计算1 荷兰盾(NLG) = 3.3779 人民币(CNY)50 荷兰盾(NLG) = 168.8974 人民币(CNY)
荷兰目前的货币是欧元 10000欧元今天等于人民币88039元

8,自然语言生成概述

近些时间以来,工作内容总围绕着自然语言生成(NLG)方向展开。近些时间,在NLP(自然语言处理)大热的当下,NLG这个方向也渐渐受到关注与发展。其实,自然语言生成(NLG)和自然语言理解(NLU)都是自然语言处理的分支,我们通常所说的自然语言处理主要是关注自然语言理解这块儿,从表面看NLG和NLU是一对逆过程,NLU主要关注点在于以人类语言(自然语言)作为输入,处理后输出机器可读的语义表示;而NLG则是将语义信息以人类可读的自然语言形式进行表达,选择并执行一定的语法和语义规则生成自然语言文本。但实际上,二者的侧重点不同,NLU实际上是使文本的结构和语义逐步清晰的过程,而NLG的研究重点是确定哪些内容是满足用户需要必须生成的,哪些内容是冗余的。【1】虽然侧重点不同,但是二者在NLP这一领域内存在着诸多共同点:1、二者均以语言模型研究为基础;2、二者需要使用语法规则;3、二者都需要解决指代、省略等语用问题等。二者在实际使用中,很多时候相互依赖、相互依存,存在于同一系统的不同阶段,发挥着不同的作用。 就像我们研究NLU(我们期望机器能够理解我们人类的语言)一样,我们也期望机器能像人类一样,能够生成高质量的人类可读的文本(语音)信息,NLG是实现这一目的的关键技术。根据文本的长短,NLG可分为句子生成和篇章生成。比如,在聊天机器人、Image caption中,我们多根据上下文生成句子;而写稿机器人、文案创作等场景中,我们就以篇幅形式的段落文本生成为主要形式。 根据输入信息的不同,NLG又可分为:数据到文本的生成、文本到文本的生成、意义到文本的生成、图像到文本的生成等。如果了解encoder-decoder框架,其实这里也可以这样理解,我们把不同形式的输入编码成某种意义,这样就把不同的输入的编码过程作为上游任务,或者称为语义信息的提取;而后续就作为下游任务,统一为意义到文本的生成。在实际应用中,诸如翻译、摘要等都属于文本到文本的生成,而这一方面的研究又最为突出;图像到文本的生成主要应用于图片描述;数据到文本的生成应用也颇广,比如新闻生成、文案生成等等。每项技术都极具应用价值并充满挑战,近些年在NLP以及AI领域均有相当多的前沿研究,而且部分研究已经应用到工业应用之中。 NLG技术在系统的研究及使用中积累了诸多经验,经验证及总结,下面对其架构及方法作一概括。 NLG 系统的主要架构可分为流线型(pipeline)和一体化型(integrated)两种,流线型的NLG系统由几个不同的模块组成,各个模块之间不透明、相互独立,交互仅限于输入输出;而一体化的NLG系统各模块之间是相互作用、共同工作的,更符合人脑的思维过程,但是实现较为困难。所以,在实际应用中较为常用的是流线型NLG系统。 如上图所示,典型的三阶段式的NLG系统被划分为文本规划、句子规划、句法实现3个模块。其中,文本规划决定文本要说什么(what);句法实现决定怎么说(how);句子规划则负责让句子更加连贯。 虽然NLG已应用于许多实践当中,但目前对NLG的研究进展远不如NLU。所以,在NLG技术发展的历史过程中,主要包括基于模板的NLG和基于深度学习的NLG方法。 1、基于模板的NLG NLG模板由句子模板和词汇模板组成。句子模板包括若干个含有变量的句子,词汇模板则是句子模板中变量对应的所有可能的值。为方便理解,下面引用文献【1】中的一个例子: <center>询问天气场景中的句子模板</center> <center>询问天气场景中的词汇模板</center> 实际工作中,基于模板的NLG技术在项目初期使用较多,由于其可控性,对于语言较为严谨的很多领域中使用极为普遍。 2、基于深度学习的NLG 伴随深度学习的热潮,以及机器翻译相关研究的快速发展,基于深度学习的NLG技术也有了较为突出的进展。尤其是encoder-decoder框架的流行,使得该框架下的seq2seq技术也得到了快速发展,尤其是18年末Bert的提出,将NLP研究推上了一个新的高度。基于深度学习的NLG任务也是使用seq2seq体系结构,我们这里主要聊一下data2text这种生成任务,根据输入信息的区别,其过程分为训练阶段和生成阶段。 (1) Training阶段。在训练阶段,encoder和decoder都需要输入信息。encoder端的输入为结构化或者半结构化的数据信息,decoder端的输入为encoder端输入信息所对应的文本信息,也可简单的理解为序列标签信息,直观地可以看出,training阶段是有监督的学习。encoder负责将输入编码成一条语义向量C,然后语义向量C作为decoder的初始状态参与decoder进行解码预估。 (2)Generation阶段。在生成阶段,decoder端不再需要外部输入信息,其网络结构需稍作改造,后一位的输入为前一时间步的输出,也就是构建RNNLM(RNN语言模型)。 基于上述的描述,这里对基于深度学习的data2text生成做一个简要的总结。 了解了上一部分的NLG体系结构,下面对NLG相关任务进行探讨。通常,通过将输入数据分解成若干个子问题来解决将输入数据转换成输出文本的NLG问题。通过对多数NLG系统总结,我们可以大致把NLG的任务分为: (1)确定内容:决定即将构建的文本中应该包含哪些信息;作为生成过程的第一步,NLG系统需要决定哪些信息应该包含在正在构建的文本中,哪些不应该包含在其中。该部分最大的进步应该算是对齐机制的提出,解决了如何自动学习数据和文本之间的对齐关系的问题。 (2)文本结构:确定文本中呈现信息的顺序;在确定了要传递什么消息之后,NLG系统需要决定它们向读者呈现的顺序。 (3)句子聚合:决定在单个句子中呈现哪些信息;并非文本计划中的每一信息都需要用一个单独的句子来表达;通过将多条消息组合成一个句子,使得生成的文本变得更流畅、更具可读性。尽管也有一些情况认为应避免聚合,总的来说,聚合很难定义,也很难实现,我们可以用各种方式解释,比如从冗余消除到语言结构组合。这里对上述语言进行“聚合”一下,就是如何用言简意赅的话语准确表达想要表达的语言信息。 (4)词汇化:找到正确单词或短语来表达信息;即用什么词或短语来表达消息的构建块。通常情况下,上下文约束在这里也扮演着重要的角色,所以这一点在中文NLG任务中尤为突出。 (5)引用表达式生成:选择单词和短语以标识域对象;这种特征表明与词汇化有着密切的相似性,但本质上的区别在于,引用表达式生成是一项“识别任务,系统需要传递足够的信息来区分一个域实体和其他域实体”。这一个task好抽象,白话解释一下,词汇化阶段主要是选用合适的词或短语表达上下文相关的语义信息,而引用表达式生成阶段的任务首先是识别要表达的对象,然后用合适的词或短语表示它。 (6)语言实现:将所有单词和短语组合成格式良好的句子。这项任务涉及到对句子的成分进行排序,以及生成正确的形态形式,通常还需要插入功能词(如助动词和介词)和标点符号等。上部分提到的NLG方法准确的说应该就是这里的语言实现方法。再来个模板表达的例子, 下面引用一段话来总结一下上述几个任务之间的逻辑关系。这些任务可以从“早期”决策过程(向读者传达哪些信息?)到“后期”(在特定句子中使用哪些单词,以及如何将它们按正确的顺序排列?)的决策过程的角度来考虑。在这里,我们通过区分更倾向于数据的选择(例如说什么)和具有越来越语言性的选择(例如,词汇化或实现)来指代“早期”和“后期”任务【3】。 对于最终生成结果的评价细分为线下评价和线上评价。 线下评价是为了对文本本身的质量作出量化。如何对生成的文本进行评价也是文本生成研究中重要的一环。Gkatzia[5]总结2005年到2014年间的常用的针对文本生成的评价方法,将其分为内在评价和外在评价方法。其中内在评价关注文本的正确性、流畅度和易理解性。常见的内在评价方法又可分为两类:第一种是借鉴翻译、摘要中基于数据的方式,采用BLEU、NIST和ROUGE等方法从数据角度进行自动化评价,通过计算生成文本和训练文本间的相似度来衡量生成质量;第二中是专家模式。通过人工评价,从有用性等对文本进行打分。外在评价则关注生成文本在实际应用中的可用性,这方面我们主要是在前面内在评价方式中设定相应阈值,以获取较好效果的文本,必要时再做人工review。 线上评价则是业务导向,我们的直接指标便是点击率或者APP进入率,根据对这些指标判断是否达到预期点击率的提升或者实际的营销效果。 本文对自然语言生成作了概要性的描述,由于该领域在实际应用中并不成熟,相关研究及实现与自然语言理解方向相差甚远,但是近些时候随着NLP整体发展的进步,以及诸多工业界的现实需求,NLG的相关研究及工程实现也受到了诸多关注。 由于理解及知识的偏差,文中或多或少存在不当之处,欢迎批评指正,也希望能与更多在此方向研究或有实践经验的牛人共同探讨学习。 【1】自然语言处理实践:聊天机器人技术原理与应用 【2】Survey of the state of the art in nature language generation——core tasks, applications and evaluation 【3】Learning Neural Templates for Text Generation,Wiseman, Shieber, Rush; EMNLP 2018 【4】万小军,冯岩松,孙薇薇. 文本自动生成研究进展与趋势. CCF 中文信息技术专业委员会 【5】 Gkatzia D, Mahamood S. A Snapshot of NLG Evaluation Practices 2005-2014[C]//Proceedings of ENLG. 2015. 【6】 Reiter E. An architecture for data-to-text systems[C]//Proceedings of the Eleventh European Workshop on Natural Language Generation. Association for Computational Linguistics, 2007: 97-104.

9,RootWIN32Agentnlg是什么病毒有那些坏处怎么处置

建议用金山清理专家,清除木马、蠕虫和恶意软件能力也很强,也能修复系统。操作很方便。不用担心兼容性问题,他与杀毒软件的机制完全不同的,类似瑞星的卡卡,但我觉得卡卡没有他那么好用。 http://buy.duba.net/download/index.shtml#kas

10,n lg n 106 怎么算

nlg2=10^6n=[10^6]/[lg2]
n=10^6/lg2,无法更化简
N=10000
该等于9吧 lg(10x10)=2 lg10=1
lg就是log10 所以nlog10 2=10^6所以剩下来你自己算一下咯

文章TAG:nlg  NLG和FRF是哪两个国家的货币  
下一篇