本文目录一览

1,原码补码

1:我们来看一下补码的求得过程:将原码的各位取反,再加1,得到补码。举个例子,1001,它全部取反之后就是0110,再加1得到0111。将原码与补码加相,会得到10000。我们应该知道,计算机最基础的运算器只能做加法,所以叫累加器,它做不了减法。所以当需要减法的时候我们取减数的补码,用被减数去加这个补码。如果是1111-1001=0110的话就相当于1111-(10000-0111)=1111 0111=0110,其中0111是1001的补码。由于码不像数字,码是有位数的限制的,当有多于其位数的操作时是不表现出来的,所以减去一个数的原码就相当于加上它的补码。相信,看明白了这一条,第三个问题也就解决了。 2.规定……惯例的,当初就这么说的,反正二进制就两个数,不是0就是1,取反就是对方。1比0大,正数比负数大……我是这样想的,这一点我不敢肯定。 4.不记符号位的话,原码 补码=100...0(0的位数与原码的位置一致),那你说这两个码是不是互为原补码?取补码之后再取一次补码就是自身了。
正数的补码就是把1换成0,0换成1 而负数补码则是按位取反再+1 你的说法是正确的~

原码补码

2,原码和补码的表示范围

如果是n=8位二进制:  原码范围:-127~+127,写成16进制为FEH~7FH  补码范围:-128~+127,写成16进制为FFH~7FH  如果是n=16位二进制:  原码范围:-32767~+32767,补码范围:-32768~+32767  如果是n=32位二进制:  原码范围:- 2 32-1–1 ~ + 2 32-1 –1 ,补码范围:- 2 32-1–1 ~ + 2 32-1 –1  原码公式:- 2 n-1–1 ~ + 2 n-1 –1  补码公式:- 2 n-1 ~ + 2 n-1 –1  (公式中的n-1是指数)
都是从全0到全1.具体与码值的类型无关,而与是否有符号有关。对于n位的变量。当为无符号数时,其范围为0~2^n-1。有符号数时,其范围为-2^(n-1) ~ 2^(n-1)-1。这里的^是乘方符号。2^n也就是2的n次幂。比如,short为16位,于是short的表示范围就是-2^15 ~ 2^15-1即-32768~32767.unsigned short的范围也就是0~2^16-1即0~65535.
这个没有范围

原码和补码的表示范围

3,什么叫原码 补码 反码

简单说就是二进制数 分正数和负数之分 正数的原码 反码 补码 都一样 负数的反码是0变1 1变0 补码就是在反码的基础上加1. 明白不 ? 好好整吧,加油 相信你一定能搞定。
原码:就是二进制码 补码:就是二进制码,但是正数的补码是,负数则不同,原码(除符号位外)各位取反,并在未位加1 反码:正数就是进制码,负数原码除符号位外各取反就是。
原码就是原机器编码; 补码:如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到; 反码:如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的
数在计算机中是以二进制形式表示的。 数分为有符号数和无符号数。 原码、反码、补码都是有符号定点数的表示方法。 一个有符号定点数的最高位为符号位,0是正,1是副。 以下都以8位整数为例, 原码就是这个数本身的二进制形式。 例如 0000001 就是+1 1000001 就是-1 正数的反码和补码都是和原码相同。 负数的反码是将其原码除符号位之外的各位求反 [-3]反=[10000011]反=11111100 负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。 [-3]补=[10000011]补=11111101 一个数和它的补码是可逆的。 为什么要设立补码呢? 第一是为了能让计算机执行减法: [a-b]补=a补+(-b)补 第二个原因是为了统一正0和负0 正零:00000000 负零:10000000 这两个数其实都是0,但他们的原码却有不同的表示。 但是他们的补码是一样的,都是00000000 特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!) [10000000]补 =[10000000]反+1 =11111111+1 =(1)00000000 =00000000(最高位溢出了,符号位变成了0) 有人会问 10000000这个补码表示的哪个数的补码呢? 其实这是一个规定,这个数表示的是-128 所以n位补码能表示的范围是 -2^(n-1)到2^(n-1)-1 比n位原码能表示的数多一个 又例: 1011 原码:01011 反码:01011 //正数时,反码=原码 补码:01011 //正数时,补码=原码 -1011 原码:11011 反码:10100 //负数时,反码为原码取反 补码:10101 //负数时,补码为原码取反+1 0.1101 原码:0.1101 反码:0.1101 //正数时,反码=原码 补码:0.1101 //正数时,补码=原码 -0.1101 原码:1.1101 反码:1.0010 //负数时,反码为原码取反 补码:1.0011 //负数时,补码为原码取反+1 在计算机内,定点数有3种表示法:原码、反码和补码 所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。 反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。 补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

什么叫原码 补码 反码

4,什么是补码原码和反码

用二进制数表示数值的方法:原码表示法是机器数的一种简单的表示法。最高位是符号位,其符号位用0表示正号,用:1表示负号,数值一般用二进制形式表示。例 6的 8位二进制原码=00000110;-6的 8位二进制原码=10000110反码可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是(符号位不变)对它的原码其他各位诸位取反而得到的。例 6的 8位二进制反码=00000110;-6的 8位二进制反码=11111001补码 机器数是正数时,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是它的反码在未位加1而得到的。例 6的 8位二进制补码=00000110;-6的 8位二进制补码=11111010
数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题. 数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为 (-127~-0 +0~127)共256个. 有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits ( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10 (00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确. 因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算: ( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10 (00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题. ( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10 (00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确 问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大). 于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为: (-128~0~127)共256个. 注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下: ( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10 (00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确 ( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10 (00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确 所以补码的设计目的是: ⑴使符号位能与有效值部分一起参加运算,从而简化运算规则. ⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计 所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。
1. 原码 原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制: [+1]原 = 0000 0001 [-1]原 = 1000 0001 第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是: [1111 1111 , 0111 1111] 即[-127 , 127] 2. 反码 反码的表示方法是: 正数的反码是其本身 负数的反码是在其原码的基础上, 符号位不变,其余各个位取反. [+1] = [00000001]原 = [00000001]反 [-1] = [10000001]原 = [11111110]反 可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算. 3. 补码 补码的表示方法是: 正数的补码就是其本身 负数的补码是在其原码的基础上, 符号位不变, 然后按位取反再加1. (即在反码的基础上+1) [+1] = [00000001]原 = [00000001]反 = [00000001]补 [-1] = [10000001]原 = [11111110]反 = [11111111]补

5,原码反码和补码表示的规则分别是什么

数在计算机中是以二进制形式表示的。数分为有符号数和无符号数。原码、反码、补码都是有符号定点数的表示方法。一个有符号定点数的最高位为符号位,0是正,1是副。以下都以8位整数为例,原码就是这个数本身的二进制形式。例如0000001就是+11000001就是-1正数的反码和补码都是和原码相同。负数的反码是将其原码除符号位之外的各位求反[-3]反=[10000011]反=11111100负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。[-3]补=[10000011]补=11111101一个数和它的补码是可逆的。为什么要设立补码呢?第一是为了能让计算机执行减法:[a-b]补=a补+(-b)补第二个原因是为了统一正0和负0正零:00000000负零:10000000这两个数其实都是0,但他们的原码却有不同的表示。但是他们的补码是一样的,都是00000000特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)[10000000]补=[10000000]反+1=11111111+1=(1)00000000=00000000(最高位溢出了,符号位变成了0)有人会问10000000这个补码表示的哪个数的补码呢?其实这是一个规定,这个数表示的是-128所以n位补码能表示的范围是-2^(n-1)到2^(n-1)-1比n位原码能表示的数多一个又例:1011原码:01011反码:01011//正数时,反码=原码补码:01011//正数时,补码=原码-1011原码:11011反码:10100//负数时,反码为原码取反补码:10101//负数时,补码为原码取反+10.1101原码:0.1101反码:0.1101//正数时,反码=原码补码:0.1101//正数时,补码=原码-0.1101原码:1.1101反码:1.0010//负数时,反码为原码取反补码:1.0011//负数时,补码为原码取反+1在计算机内,定点数有3种表示法:原码、反码和补码所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
带符号的数字,可变成各种代码(八位的),见图:但是,在计算机中,原码和反码都是不存在的。因此,就不必关心它们了。只有补码,才是实用的编码。其变换规律,你看看图,就可以自己摸索出来。
数在计算机中是以二进制形式表示的。数分为有符号数和无符号数。原码、反码、补码都是有符号定点数的表示方法。一个有符号定点数的最高位为符号位,0是正,1是副。以下都以8位整数为例,原码就是这个数本身的二进制形式。例如0000001就是+11000001就是-1正数的反码和补码都是和原码相同。负数的反码是将其原码除符号位之外的各位求反[-3]反=[10000011]反=11111100负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。[-3]补=[10000011]补=11111101一个数和它的补码是可逆的。为什么要设立补码呢?第一是为了能让计算机执行减法:[a-b]补=a补+(-b)补第二个原因是为了统一正0和负0正零:00000000负零:10000000这两个数其实都是0,但他们的原码却有不同的表示。但是他们的补码是一样的,都是00000000特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)[10000000]补=[10000000]反+1=11111111+1=(1)00000000=00000000(最高位溢出了,符号位变成了0)有人会问10000000这个补码表示的哪个数的补码呢?其实这是一个规定,这个数表示的是-128所以n位补码能表示的范围是-2^(n-1)到2^(n-1)-1比n位原码能表示的数多一个又例:1011原码:01011反码:01011//正数时,反码=原码补码:01011//正数时,补码=原码-1011原码:11011反码:10100//负数时,反码为原码取反补码:10101//负数时,补码为原码取反+10.1101原码:0.1101反码:0.1101//正数时,反码=原码补码:0.1101//正数时,补码=原码-0.1101原码:1.1101反码:1.0010//负数时,反码为原码取反补码:1.0011//负数时,补码为原码取反+1在计算机内,定点数有3种表示法:原码、反码和补码所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
一. 机器数和真值 在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念. 1、机器数 一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1. 比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。 那么,这里的 00000011 和 10000011 就是机器数。 2、真值 因 为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。 例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1 二. 原码, 反码, 补码的基础概念和计算方法. 在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式. 1. 原码 原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制: [+1]原 = 0000 0001 [-1]原 = 1000 0001 第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是: [1111 1111 , 0111 1111] 即 [-127 , 127] 原码是人脑最容易理解和计算的表示方式. 2. 反码 反码的表示方法是: 正数的反码是其本身 负数的反码是在其原码的基础上, 符号位不变,其余各个位取反. [+1] = [00000001]原 = [00000001]反 [-1] = [10000001]原 = [11111110]反 可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算. 3. 补码 补码的表示方法是: 正数的补码就是其本身 负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1) [+1] = [00000001]原 = [00000001]反 = [00000001]补 [-1] = [10000001]原 = [11111110]反 = [11111111]补 对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

6,原码反码补码

请我给你的详解:原码、补码和反码(1)原码表示法 原码表示法是机器数的一种简单的表示法。其符号位用0表示正号,用:表示负号,数值一般用二进制形式表示。设有一数为x,则原码表示可记作〔x〕原。例如,X1= +1010110X2= 一1001010其原码记作:〔X1〕原=[+1010110]原=01010110〔X2〕原=[-1001010]原=11001010原码表示数的范围与二进制位数有关。当用8位二进制来表示小数原码时,其表示范围:最大值为0.1111111,其真值约为(0.99)10最小值为1.1111111,其真值约为(一0.99)10当用8位二进制来表示整数原码时,其表示范围:最大值为01111111,其真值为(127)10最小值为11111111,其真值为(-127)10在原码表示法中,对0有两种表示形式:〔+0〕原=00000000[-0] 原=10000000(2)补码表示法 机器数的补码可由原码得到。如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到的。设有一数X,则X的补码表示记作〔X〕补。例如,[X1]=+1010110[X2]= 一1001010[X1]原=01010110[X1]补=01010110即 [X1]原=[X1]补=01010110[X2] 原= 11001010[X2] 补=10110101+1=10110110补码表示数的范围与二进制位数有关。当采用8位二进制表示时,小数补码的表示范围:最大为0.1111111,其真值为(0.99)10最小为1.0000000,其真值为(一1)10采用8位二进制表示时,整数补码的表示范围:最大为01111111,其真值为(127)10最小为10000000,其真值为(一128)10在补码表示法中,0只有一种表示形式:[+0]补=00000000[+0]补=11111111+1=00000000(由于受设备字长的限制,最后的进位丢失)所以有[+0]补=[+0]补=00000000(3)反码表示法 机器数的反码可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。设有一数X,则X的反码表示记作〔X〕反。例如:X1= +1010110X2= 一1001010〔X1〕原=01010110[X1]反=〔X1〕原=01010110[X2]原=11001010[X2]反=10110101反码通常作为求补过程的中间形式,即在一个负数的反码的未位上加1,就得到了该负数的补码。例1. 已知[X]原=10011010,求[X]补。分析如下:由[X]原求[X]补的原则是:若机器数为正数,则[X]原=[X]补;若机器数为负数,则该机器数的补码可对它的原码(符号位除外)所有位求反,再在未位加1而得到。现给定的机器数为负数,故有[X]补=[X]原十1,即[X]原=10011010[X]反=11100101十) 1 [X]补=11100110例2. 已知[X]补=11100110,求〔X〕原。分析如下:对于机器数为正数,则〔X〕原=〔X〕补对于机器数为负数,则有〔X〕原=〔〔X〕补〕补现给定的为负数,故有:〔X〕补=11100110〔〔X〕补〕反=10011001十) 1 〔〔X〕补〕补=10011010=〔X〕原 或者说:数在计算机中是以二进制形式表示的。 数分为有符号数和无符号数。 原码、反码、补码都是有符号定点数的表示方法。 一个有符号定点数的最高位为符号位,0是正,1是副。 以下都以8位整数为例, 原码就是这个数本身的二进制形式。 例如0000001 就是+11000001 就是-1 正数的反码和补码都是和原码相同。 负数的反码是将其原码除符号位之外的各位求反 [-3]反=[10000011]反=11111100 负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。 [-3]补=[10000011]补=11111101 一个数和它的补码是可逆的。 为什么要设立补码呢? 第一是为了能让计算机执行减法: [a-b]补=a补+(-b)补 第二个原因是为了统一正0和负0 正零:00000000 负零:10000000 这两个数其实都是0,但他们的原码却有不同的表示。 但是他们的补码是一样的,都是00000000 特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!) [10000000]补 =[10000000]反+1 =11111111+1 =(1)00000000 =00000000(最高位溢出了,符号位变成了0) 有人会问 10000000这个补码表示的哪个数的补码呢? 其实这是一个规定,这个数表示的是-128 所以n位补码能表示的范围是 -2^(n-1)到2^(n-1)-1 比n位原码能表示的数多一个又例:1011 原码:01011 反码:01011 //正数时,反码=原码 补码:01011 //正数时,补码=原码 -1011 原码:11011 反码:10100 //负数时,反码为原码取反 补码:10101 //负数时,补码为原码取反+1 0.1101 原码:0.1101 反码:0.1101 //正数时,反码=原码 补码:0.1101 //正数时,补码=原码 -0.1101 原码:1.1101 反码:1.0010 //负数时,反码为原码取反 补码:1.0011 //负数时,补码为原码取反+1 在计算机内,定点数有3种表示法:原码、反码和补码所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。 反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为: 00000000 00000000 00000000 00000101 5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。 现在想知道,-5在计算机中如何表示? 在计算机中,负数以其正值的补码形式表达。 什么叫补码呢?这得从原码,反码说起。 原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。 比如 00000000 00000000 00000000 00000101 是 5的 原码。 反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。 取反操作指:原为1,得0;原为0,得1。(1变0; 0变1) 比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。 称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。 反码是相互的,所以也可称: 11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。 补码:反码加1称为补码。 也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。 比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。 那么,补码为: 11111111 11111111 11111111 11111010 1 = 11111111 11111111 11111111 11111011 所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。 再举一例,我们来看整数-1在计算机中如何表示。 假设这也是一个int类型,那么: 1、先取1的原码:00000000 00000000 00000000 00000001 2、得反码: 11111111 11111111 11111111 11111110 3、得补码: 11111111 11111111 11111111 11111111 正数的原码,补码,反码都相同,都等于它本身 负数的补码是:符号位为1,其余各位求反,末位加1 反码是:符号位为1,其余各位求反,但末位不加1 也就是说,反码末位加上1就是补码 1100110011 原 1011001100 反 除符号位,按位取反 1011001101 补 除符号位,按位取反再加1 正数的原反补是一样的 在计算机中,数据是以补码的形式存储的: 在n位的机器数中,最高位为符号位,该位为零表示为正,为1表示为负; 其余n-1位为数值位,各位的值可为0或1。 当真值为正时:原码、反码、补码数值位完全相同; 当真值为负时: 原码的数值位保持原样, 反码的数值位是原码数值位的各位取反, 补码则是反码的最低位加一。 注意符号位不变。 如:若机器数是16位: 十进制数 17 的原码、反码与补码均为: 0000000000010001 十进制数-17 的原码、反码与补码分别为:1000000000010001、1111111111101110、1111111111101111
24=11000B30=11110B正数所有的原码/反码/补码是相同的,请注意哦!
24:0001100030:00011110由于是正数,所以三种码相同

文章TAG:原码  补码  原码补码  
下一篇