本文目录一览

1,模糊聚类法

模糊聚类方法包括传递闭包法、最大树法、编网法、基于摄动的模糊聚类方法、模糊C-均值方法等。模糊聚类分析己广泛应用于经济学、生物学、气象学、信息科学、工程技术科学等许多领域。

模糊聚类法

2,模糊聚类法的步骤

(1) 建立模糊相似矩阵R=(sij)n×n ,其中sij为相似系数,其定义可以有多种形式:夹角余弦,相关系数或距离(2) 创建模糊等价矩阵R*(3) 选取截取水平λ(0<λ<1),对样本进行模糊聚类

模糊聚类法的步骤

3,模糊聚类法的特点

由于模糊聚类得到了样本属于各个类别的不确定性程度,表达了样本类属性的中介性,即建立起了样本对于类别的不确定性描述,更能客观的反映实际事物,从而成为聚类分析研究的主流。模糊聚类分析所讨论的对象,事先没有给定任何模式供分类参考,要求按照样本各自的属性特征加以分类。

模糊聚类法的特点

4,模糊聚类的基本思想是什么

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。
为叙述清晰,先来考虑非模糊聚类问题,每个样本只属于一个聚类。此时,可以设置聚类的准则为各类的类内平方和最小,类内平方和是各类内数据与其中心的距离平方和。显然越小,这个中心与分类结果越合理。在这一个准则下,可以推导出来 hcm 也就是k均值聚类,它是硬聚类,也可以看做硬的fcm。fcm的思路和它是基本一致的,也是一各类的“类内平方和”加到一起最小维标准的,但是这个“类内平方和”比hcm的稍微好了一点,它在每个数据与中心之间的距离之前成了一个权,这个权就是隶属度,显然这么做更加合理,隶属度小的距离其的作用就被抑制了,fcm的这个准则,通常又叫做“加权误差平方和最小化准则”,前面的hcm当然就是“误差平方和最小化准则”了。

5,模糊聚类分析法和聚类分析法有什么区别还有一种动态模糊分析法

模糊聚类分析是聚类分析的一种。聚类分析按照不同的分类标准可以进行不同的分类。就好像人按照性别可以分成男人和女人,按照年龄可以分为老中青一样。聚类分析如果按照隶属度的取值范围可以分为两类,一类叫硬聚类算法,另一类就是模糊聚类算法。隶属度的概念是从模糊集理论里引申出来的。传统硬聚类算法隶属度只有两个值 0 和 1。 也就是说一个样本只能完全属于某一个类或者完全不属于某一个类。举个例子,把温度分为两类,大于10度为热,小于或者等于10度为冷,这就是典型的“硬隶属度”概念。 那么不论是5度 还是负100度都属于冷这个类,而不属于热这个类的。而模糊集里的隶属度是一个取值在[0 1]区间内的数。一个样本同时属于所有的类,但是通过隶属度的大小来区分其差异。比如5度,可能属于冷这类的隶属度值为0.7,而属于热这个类的值为0.3。这样做就比较合理,硬聚类也可以看做模糊聚类的一个特例。你说的动态模糊分析法我在文献里很少见到好像并不主流,似乎没有专门的这样一种典型聚类算法,可能是个别人根据自己需要设计并命名的一种针对模糊聚类的改进方法,这个不好说了就。我见过有把每个不同样本加权的,权值自己确定,这样就冠以“动态"二字,这都是作者自己起的。也有别的也叫”动态“的,可能也不一样,似乎都是个别人自己提出的。至于文献,你可以到中国知网搜索博士或者硕士毕业论文,有关模糊聚类为题目的,在第一章引言里面必然会有详细的介绍,或者联系我,我就是做这方面的。希望能对你有所帮助,给点分吧,打的挺累的。

6,模糊聚类分析的常用分类方法

数据分类中,常用的分类方法有多元统计中的系统聚类法、模糊聚类分析等.在模糊聚类分析中,首先要计算模糊相似矩阵,而不同的模糊相似矩阵会产生不同的分类结果;即使采用相同的模糊相似矩阵,不同的阈值也会产生不同的分类结果.“如何确定这些分类的有效性”便成为模糊聚类的要点。识别研究中的一个重要问题.文献,把有效性不满意的原因归结于数据集几何结构的不理想.但笔者认为,不同的几何结构是对实际需要的反映,我们不能排除实际需要而追求所谓的“理想几何结构”,不理想的分类不应归因于数据集的几何结构.针对同一模糊相似矩阵,文献建立了确定模糊聚类有效性的方法.用固定的显著性水平,在不同分类的F一统计量和F检验临界值的差中选最大者,即为有效分类.但是,当显著性水平变化时,此方法的结果也会变化.文献引进了一种模糊划分嫡来评价模糊聚类的有效性,并人为规定当两类的嫡大于一数时,此两类可合并,通过逐次合并,最终得到有效分类.此方法人为干预较多,当这个规定数不同时,也会得到不同的结果.另外这两种方法也未比较不同模糊相似矩阵的分类结果. 系统聚类法是基于模糊等价关系的模糊聚类分析法。在经典的聚类分析方法中可用经典等价关系对样本集X进行聚类。设R是 X上的经典等价关系。对X中的两个元素x和y,若xRy或(x,y)∈R,则将x和y并为一类,否则x和y不属于同一类。相应地,可用X上的模糊等价关系对样本集X进行模糊聚类。设慒是X上的模糊等价关系,是慒 的隶属函数。对于任何α∈【0,1】,定义慒 的α截关系 Sα是X上的经典等价关系。根据Sα得到X 的一种聚类,称为在α水平上的聚类。应用这种方法,分类的结果与α的取值大小有关。α取值越大,分的类数越多。α小到某一值时,X中的所有样本归并为一类。这种方法的优点在于可按实际需要选取α的值,以便得到恰当的分类。系统聚类法的步骤如下:①用数字描述样本的特征。设被聚类的样本集为 X=因为rii=1(xi与自身没有差异),rij=rji(xi与xj之间的差异等同于xj与xi之间的差异),所以由rij(i,j=1,…,n)可得X上的模糊相似关系。一般,R不具备可传递性,因而R不一定是 X上的模糊等价关系。③运用合成运算R=R?R(或R=R?R等)求出最接近相似关系R的模糊等价关系S=R(或R等)。若R已是模糊等价关系,则取S=R。④选取适当水平α(0≤α≤1),得到X 的一种聚类。 逐步聚类法是一种基于模糊划分的模糊聚类分析法。它是预先确定好待分类的样本应分成几类,然后按最优化原则进行再分类,经多次迭代直到分类比较合理为止。在分类过程中可认为某个样本以某一隶属度隶属于某一类,又以另一隶属度隶属于另一类。这样,样本就不是明确地属于或不属于某一类。若样本集有 n个样本要分成c类,则它的模糊划分矩阵为此c×n模糊划分矩阵有下列特性:①uij∈【0,1】;i=1,…,c;j=1,…,n。②即每一样本属于各类的隶属度之和为1。③即每一类模糊子集都不是空集。

文章TAG:模糊聚类  模糊聚类法  
下一篇