常用傅里叶变换对,请问下傅立叶变换有哪些应用能说的详细点吗
来源:整理 编辑:智能门户 2025-06-07 21:54:04
本文目录一览
1,请问下傅立叶变换有哪些应用能说的详细点吗
1傅里叶积分的收敛判别法
2傅里叶积分的复数形式
3傅里叶变换与傅里叶逆变换
4佩利-维纳定理
5多元傅里叶变换
一种积分变换,它来源于函数的傅里叶积分表示。积分 (1) 称为? 的傅里叶积分。周期函数在一定条件下可以展成傅里叶级数,而在(-∞,∞)上定义的非周期函数?,显然不能用三角级数来表示。但是J.-B.-J.傅里叶建议把?表示成所谓傅里叶积分的方法可用于电路分析中的非线性分析;还有信号的分解,还有微分的求解
2,傅里叶变换有哪些具体的应用
傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的 所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。
3,信号与系统公式和常用的连续傅里叶变换
去百度文库,查看完整内容>内容来自用户:大虾帮我表6.3f(t)=12π+∞?∞常用的连续傅里叶变换对及其对偶关系dωF(ω)=+∞?∞∫F(ω)ejωt∫f(t)e?jωtdt重要连续傅里叶变换对连续时间函数f(t)傅里叶变换F(ω)相对偶的连续傅里叶变换对连续时间函数f(t)傅里叶变换F(ω)1ttk重要√√δ(t)dδ(t)dt1jω2πδ(ω)j2πdδ(ω)dω√dkδ(t)dtk(jω)k1+πδ(ω)jωjπd1δ(ω)?2dωω2jωe?jωt02πjkdkδ(ω)dωku(ω)√u(t)tu(t)11δ(t)?2j2πt√?1,t>0sgn(t)=???1,t<0δ(t?t0)cosω0tsinω0t1π,t≠00π[δ(ω+ω0)+δ(ω?ω0)]jπ[δ(ω+ω0)?δ(ω?ω0)]ejωtδ(t+t0)+δ(t?t0)??j,ω>0F(ω)=??j,ω<02πδ(ω?ω0)2cosωt0j2sinωt0??1,ωW??1?ωW,ωW??√δ(t+t0)?δ(t?t0)W√??1,tτ??1?tτ,tτ??τSa(ωτ2)πSa(Wt)√√τSa2(ωτ2)WWtSa2()2π2√e?atu(t),Ree?at1a+jω
4,傅里叶变换
先把at当成一个整体u,利用公式求傅里叶变换,在公式的后面的e^(-jwt),转换成含有u的式子,得出结果之后化简一下,你要的答案就出来了您对于傅里叶变换恐怕并不十分理解 傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的 所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度 对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示 已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。这些高频信号是用来修饰频率与原信号相订丁斥股俪噶筹拴船茎同的正弦信号,使之趋近于原信号的。所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。 傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。 我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。傅里叶变换值得你用心去理解——哪怕苦苦思索几个月也是值得的——我当初也想过:只要会算题就行。但浙大校训“求是”时时刻刻鞭策着我追求对理论的理解——最终经过很痛苦的一番思索才恍然大悟。建议你看一下我们信号与系统课程的教材:化学工业出版社的《信号与系统》,会有所帮助。 参考资料:原创
5,如何理解傅立叶变换
傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话 ,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。以上都是自己一年前的理解,有的可能不够准确,如果你有什么问题,可以发消息给我,不过这个要想真的弄懂,还得自己去理解,我是在学了傅里叶变换几年以后才理解的,但是这是知道怎么用,直到后来自己做毕业设计,才真正理解了一点它的内涵。早期的数学以微积分为主。微分方程的计算过程通常都是非常复杂的。有时很难求解。后来出现了变换域解法,讲微积分变成有理式的加减乘除运算,大大简化了微积分方程求解方法。这就是拉普拉斯变换。拉普拉斯变换能将时域问题变换到s域,时域微积分变成s域的乘除运算。傅立叶变换是拉普拉斯变换的简化版本。只保留了s域虚轴(即iω)对应的分量。傅立叶变换舍弃了瞬态解,只保留了稳态解。稳态解在基础电工学,力学等学科中,很常用,足够满足解决实际问题的需要。z变换则是另一种变换域方法,用于解决差分方程。差分是微分的近似,方便计算机处理,用途也是非常广泛。z变换能将时域的差分,变换成z域的加减乘除,大大简化了差分方程的求解。傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。
6,如何理解傅里叶变换公式
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。定义f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。通俗解释首页,使用正余弦波,理论上可以叠加为一个矩形。[2] 第一幅图是一个郁闷的余弦波 cos(x)傅里叶变换(5张)第二幅图是 2 个卖萌的余弦波的叠加 cos (x) +a.cos (3x)第三幅图是 4 个发春的余弦波的叠加第四幅图是 10 个便秘的余弦波的叠加随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。是上图的正弦波累加成矩形波,我们换一个角度来看看:这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱。可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。振幅为 0 的正弦波。1、公式描述:公式中f(ω)为f(t)的像函数,f(t)为f(ω)的像原函数。2、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。3、相关* 傅里叶变换属于谐波分析。* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;* 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;*卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;* 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(fft))。
文章TAG:
常用 傅里叶 傅里叶变换 变换 常用傅里叶变换对
相关文章推荐
- 自动化设备做的最好的厂区,中国生产自动化设备公司有哪些?
- 精铸件自动化设备切割机,自动铸造和切割设备
- 福州小型自动化设备厂招聘,福州电气工程及其自动化招聘
- 广州自动化设备报价单图片,自动化设备报价模板
- 车辆自动化专业怎么样,中南大学自动化专业怎么样?
- 百度风控部门 数据挖掘
- 徐工自动化专业,我应该报考徐工的哪个职位?
- 自动窗帘,All 自动窗帘有哪些功能?
- 比博众更好的自动化公司,中国靠谱知名自动化公司有哪些?
- 晨瑞自动化设备有限公司,陈天自动化设备有限公司
- 电视购物机器人小胖,小胖机器人广告视频
- 最新式自动化养鸡设备,小型自动养鸡设备
- 电气自动化常用画图软件,电气绘图软件什么是最好用的?
- 自动化模具设备工程,瑞邦手套模具自动化设备
- 自动化设备项目要点,自动化设备调试工作流程