本文目录一览

1,哪种测井方法适用于盐水钻井液

电阻率测井,一般来说感应测井仪器在低阻环境中精度优于测向测井仪器。但是钻井液电阻率过低,感应测井也需要曲线校正后才能用于解释,测深也会受影响。
影响笔记到达,盐水导电性要比常规水基钻井液大许多;电阻测井的本质就是根据导电性大小来判断的;油基钻井液导电性又比水基钻井液弱许多,相对而言影响更小些。

哪种测井方法适用于盐水钻井液

2,地球物理测井主要有哪些方法以及原理

地球物理测井主要有电法测井,用电阻等于电压除以电流的原理测。声波测井,主要是根据岩石的声学特性来测井,声波里面包含超声等测井。核测井主要是根据元素在自然状态或者被外界放射性物质激发后的核反应原理测井。核磁共振测井,主要是利用氢元素被磁化后到恢复原状态的时间等特性来测井,能有效测量孔隙度,流体等。电磁波测井,主要是根据法拉第电磁感应原理测量地层的电导率。主要的测井方法就这些。
支持一下感觉挺不错的

地球物理测井主要有哪些方法以及原理

3,测井在油气勘探中的作用

测井技术又称为地球物理测井技术,是一种井下油气勘探的重要手段,是在钻探井中使用反映热、声、电、光、磁和核放射性等物理性质的仪器测量地层的各种物理信息;通过对这些信息按各自的物理原理和它们之间相互联系进行数据处理和解释,辨别地下岩石的孔隙性、渗透性和流体性质及其分布,用于发现油气藏,评估油气储量及其产量。测井技术在油气田开发和钻井工程中也有广泛的用途。测井技术还是勘探煤、盐、硫、石膏、金属、地热、地下水、放射性等矿产资源的重要方法和有效手段,并扩展到工程地质、灾害地质、生态环境等领域的应用。在油气藏勘探开发中测井技术是地质家和油气藏开发工程师的“眼睛”,通过测井获得的测井资料是测井评价、地质研究和油气藏开发的科学依据。
用自然电位或gr划分层位,油水看电阻曲线,气看声波,会有周波跳跃现象去搜百度文库会有详细文档

测井在油气勘探中的作用

4,常规测井方法有哪些

sp-gr-zdl-cn-bhc-dll(dil)-msfl-cal自然电位(sp)自然伽玛(gr)--泥质含量,校深岩性密度(zdl或者ldt)--孔隙度补偿种子(cns)--孔隙度补偿声波(bhc)--孔隙度双测向(dll)或者双感应(dil)--电阻率微球(msfl)--电阻率井陉(cal)此外特殊方法还有声电成像(cbil/cast;star/xmri/fmi)偶极子声波/全波列声波(mac/xmac;wstt)核磁成像(nmr/mril)地层测试(fmt/rft/sftt/mdt)垂直地震剖面(vsp)爆炸/旋转取芯(swc;rsct)
常规测井方法有9种:  1、井径;  2、自然伽玛;  3、自然电位;  4、深浅双侧向(或深浅双感应)电阻率;  5、微球型聚焦(或八侧向)电阻率;  6、补偿声波;  7、地层倾角;  8、补偿密度;  9、补偿中子。
自然伽马测井 自然电位测井 井径测井 电法测井 声波时差测井 密度测井 补偿中子测井
测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。石油钻井时,在钻到设计井深深度后都必须进行测井,又称完井电测,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。这种测井习惯上称为裸眼测井。而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。常规测井方法有以下几种:井径测井自然伽马测井自然电位测井密度测井补偿中子测井声波速度测井声波幅度测井声波全波列测井双侧向测井微电阻率测井双感应测井自然伽马能谱测井阵列感应测井核磁共振测井地层倾角测井

5,随钻测井的原理

随钻测井的关键技术是信号传输,目前广泛使用的是钻井液压力脉冲传输,这是目前随钻测井仪器普遍采用的方法,它是将被测参数转变成钻井液压力脉冲,随钻井液循环传送到地面。其简要原理如图所示,被测参数经数字化编码后,变成高(“1”)、低(“0”)电信号,由它控制钻井液脉冲发生器的蘑菇头,当编码为“1”时,蘑菇头上移,使流经锥形口的钻井液阻力增加,产生附加压力。当编码为“0”时,蘑菇头向下回到原位,压力降至正常。这是正脉冲传输系统。类似的还有负脉冲传输系统,连续波传输系统。钻井液压力脉冲传输的优点是经济、方便,缺点是数据传输率(每秒传送的数据位数)低。近年来,为提高传输率又开始试用电磁波传输技术,它是将随钻测井仪器放在非磁性钻铤内,非磁性钻铤和上部钻杆之间,有绝缘短节,以便于载有被测信息的低频电磁波向井周地层传播。在地面,作为钻机与地面电极之间的电压差被探测出来。早期的电磁波传输由于信号衰减大、传输距离短且成本高而未能商用,近年来由于技术改进已开始进入市场,其优点是传输率高,不受钻井液性能影响。此外,还有井下存储方式,将全部数据存于井下存储器中,待起钻后回收数据。优点是成本低,数据保存可靠。缺点是地面不能实时得到数据,无法指导钻进。对于数据量很大的随钻测井,如随钻成像测井,通常采用实时传输和井下存储相结合的办法,对关键井段采用实时传输,而其他井段采用井下存储。
在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。但是,测井资料的获取总是在钻井完工之后,用电缆将仪器放入井中进行测量,然而,在某些情况下,如井的斜度超过65度的大斜度井甚至水平井,用电缆很难将仪器放下去;此外,井壁状况不好易发生坍塌或堵塞也难取得测井资料。由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层。因此,钻完之后再测井,地层的各种参数与刚钻开地层时有所差别。于是人们在想,如果把测井仪器放在钻头上,让钻头长上“眼睛”,一边钻进一边就获取地层的各种资料,这就是随钻测井。这样不仅对任何状况的井,特别是水平井可以进行测井,而且利用测得的钻井参数和地层参数及时调整钻头轨迹,使之沿目的层方向钻进。由于随钻测井获得的地层参数是刚钻开的地层参数,它最接近地层的原始状态,用于对复杂地层的含油、气评价比一般电缆测井更有利。 随钻测井仪器放在钻铤内,除测量电阻率、声速、中子孔隙度、密度等常规测井和某些成像测井外,还测量钻压、扭矩、转速、环空压力等钻井参数。由于钻头钻进过程中环境恶劣,温度很高,压力极大,振动强烈,因此,随钻测井仪器的可靠性至今仍是商家最为重视的问题。  随钻测井的关键技术是信号传输,目前广泛使用的是钻井液压力脉冲传输,这是目前随钻测井仪器普遍采用的方法,它是将被测参数转变成钻井液压力脉冲,随钻井液循环传送到地面。其简要原理如图所示,被测参数经数字化编码后,变成高(“1”)、低(“0”)电信号,由它控制钻井液脉冲发生器的蘑菇头,当编码为“1”时,蘑菇头上移,使流经锥形口的钻井液阻力增加,产生附加压力。当编码为“0”时,蘑菇头向下回到原位,压力降至正常。这是正脉冲传输系统。类似的还有负脉冲传输系统,连续波传输系统。钻井液压力脉冲传输的优点是经济、方便,缺点是数据传输率(每秒传送的数据位数)低。近年来,为提高传输率又开始试用电磁波传输技术,它是将随钻测井仪器放在非磁性钻铤内,非磁性钻铤和上部钻杆之间,有绝缘短节,以便于载有被测信息的低频电磁波向井周地层传播。在地面,作为钻机与地面电极之间的电压差被探测出来。早期的电磁波传输由于信号衰减大、传输距离短且成本高而未能商用,近年来由于技术改进已开始进入市场,其优点是传输率高,不受钻井液性能影响。此外,还有井下存储方式,将全部数据存于井下存储器中,待起钻后回收数据。优点是成本低,数据保存可靠。缺点是地面不能实时得到数据,无法指导钻进。对于数据量很大的随钻测井,如随钻成像测井,通常采用实时传输和井下存储相结合的办法,对关键井段采用实时传输,而其他井段采用井下存储。  由于随钻测井既能用于地质导向,指导钻进,又能对复杂井、复杂地层的含油气情况进行评价,已是世界各石油服务公司争相研究、不断推出新方法新技术的热点。

6,四种测井方法的应用

4个有三个是水文地质的。自然珈玛测井一般是铀矿勘探才用的。习惯上的一般测井比如煤勘探或是其他有色金属勘探,一般是采用自然电位测井仪,根据不同地区,不同岩性,不同矿体的密度不同,其自然电位也不同的原理,结合地表岩性矿体特征和钻孔设计要求,就能判定钻孔中不同岩性和不同矿体。判断水淹层是由水文技术员(静止24小时)后测定的。划分渗透性岩层和估计泥质含量是根据钻孔打出来的岩芯确定的。
论坛里就有http://www.sunpetro.cn/forum.php?mod=viewthread&tid=5349&highlight=%c3%ba%b2%e3%c6%f8%b4%a2%b2%e3%b2%e2%be%ae%c6%c0%bc%db%b7%bd%b7%a8%bc%b0%c6%e4%d3%a6%d3%c3
四种测井方法应用:1、地球物理测井通常指地球物理测井。把利用电、磁、声、热、核等物理原理制造的各种测井仪器,由测井电缆下入井内,使地面电测仪可沿着井筒连续记录随深度变化的各种参数。通过表示这类参数的曲线,来识别地下的岩层,如油、气、水层、煤层、金属矿床等。2、勘探测井对石油工业来说,在勘探期间寻找新油田的测井称勘探测井,内容有:①地层倾角测井(了解地下构造及沉积构造);②饱和度测井(识别岩性、油、气、水储集层);③电缆式地层测试(对油、气、水储集层进行测试)。3、开发测井在开采过程中的测井称开发测井。主要测定井下油、气、水层的岩石物理性质,监测各油层的工作情况,检查开发井的技术状况等,是开发井采取作业措施和进行油田开发调整的重要依据。内容有饱和度测井、生产测井、工程测井。4、声波测井声波在不同介质中传播时,速度、幅度及频率的变化等声学特性也不相同。声波测井就是利用岩石的这些声学性质来研究钻井的地质剖面,判断固井质量的一种测井方法。
你们好强呀我爸爸也是学地质的呀他也好强呀但是我不够强
声波时差主要用来判断渗透层,声波时差越大,说明岩石中间的空隙越大,也就说明绝对孔隙度越好.在油层区域范围内,声波时差非常小时,可以判定该层位为干层.自然伽玛主要用来判断泥质含量,伽玛值越高,说明泥质含量越高,也就是这段的物性不好.自然电位主要用来判断岩性,在沙泥岩区域,当自然电位高时,可以判定为泥岩,低为砂岩.电阻率电阻率一般分为三条曲线:深感应,中感应,八侧向三条.三者之间的间隔距离说明含水情况,间隔距离越大,说明含水越高.另外还有两条4M和2.5M的电阻曲线,仅仅作为参考,一般情况下不太用得到的.另外,还有一个微电位和微梯度,他们之间的间隔距离说明渗透率和孔隙度.间隔距离越大,说明渗透率越好.两条平行的情况说明该层的渗透率比较稳定.几条曲线综合运用:假设为低自然电位,低自然伽玛,高声波时差:高电阻且三条曲线分开距离小,可以基本判定为油层.高电阻且分开距离大,可以基本判定为油水同层活底水油层.低电阻且分开距离大,可以基本判定为水层.个人见解.有错误的话希望批评指正.
钻井穿过地层后,井下地层会是什么样子呢?对于一些松软致密地层,如泥岩等,由于钻井液浸泡,井壁垮塌,井眼扩大(井径明显大于钻头直径),根据井径测井曲线,可划分出泥岩层。这类非渗透性地层,通常不会是油气层。但对一些孔隙性和渗透性地层,要进行仔细研究。 所谓孔隙性岩石,是指岩石中有互相连通的孔隙空间,孔隙空间的大小用孔隙度表示。渗透性岩石是指在一定压差下流体能在孔隙中运动,渗透性愈好表示流动性愈好。如果孔隙中储存有油气,那么渗透性好的岩石中比较容易开采出石油。对于渗透性、孔隙性岩石,在钻井过程中,为了防止井喷,一般情况下井内钻井液柱的压力大于地层压力,具有一定的压差,钻井液中的水分(称为钻井液滤液)会侵入到地层中。 钻井液滤液将地层中的原生流体驱走,在井壁附近的地层中钻井液滤液会将原生流体全部替换,孔隙中100%含有钻井液滤液,这一区域称为“冲洗带”。 随着离井壁的距离增大,钻井液滤液含量逐渐减少,原生流体含量逐渐增大,直到钻井液滤液含量变为零,到达100%含有原生流体的地层的原始状态——原状地层。 从钻井液滤液含量开始变化到其含量为零的区域叫作“过渡带”,冲洗带和过渡带统称侵入带。 对于好的储集层,多形成侵入带,它是寻找油气层的重要标志,但同时给测井带来更复杂的问题。为了探测出冲洗带、过渡带和原状地层的电阻率,要用具有深、中、浅探测深度的组合测井和阵列测井。

文章TAG:测井  测井技术  技术  方法  测井技术  
下一篇