本文目录一览

1,小波分析缺点是什么

缺点就是小波基的选取太难了。 有的人为了达到自己想要的分离效果,还自己做需要的小波基。

小波分析缺点是什么

2,小波分析和傅里叶分析有什么区别或者说两种方法的优势和缺点各是

根本些的区别,就是傅里叶分析里,和原函数做内积的函数是正弦波,小波分析里面的小波变换和原来函做内积的函数就不是正弦波了,而是一些时频支集上都相对集中的函数,称为小波,要满足些性质,比如在整个区间上的积分是0,一般需要单位化,然后就会多出来一个尺度,这个尺度把基本小波做拉伸和缩放,构造出一系列的小波集。 时频分析一般会先讲加窗福利叶变换,然后引出小波变换,最后会讲Wigner-ville分布。 这是基础方面的知识。 至于应用的话,要根据具体的情况具体的对待的,什么时候该用什么才好是要看具体的问题的。

小波分析和傅里叶分析有什么区别或者说两种方法的优势和缺点各是

3,小波分析和小波包分析的区别是什么

区别:小波包分解比小波分析的信号时频分辨率更高。  小波包分析是小波分析的延伸,其基本思想是让 信息能量集中,在细节中寻找有序性,把其中的 规律筛选出来,为信号提供一种更加精细的分析 方法。它将频带进行多层次划分,对多分辨分析 没有细分的高频部分进一步分解,并能够根据被 分析信号的特征自适应地选择相应频带,使之与 信号频谱相匹配,从而提高时一频分辨率。
根本些的区别,就是傅里叶分析里,和原函数做内积的函数是正弦波,小波分析里面的小波变换和原来函做内积的函数就不是正弦波了,而是一些时频支集上都相对集中的函数,称为小波,要满足些性质,比如在整个区间上的积分是0,一般需要单位化,然后就会多出来一个尺度,这个尺度把基本小波做拉伸和缩放,构造出一系列的小波集。时频分析一般会先讲加窗福利叶变换,然后引出小波变换,最后会讲wigner-ville分布。这是基础方面的知识。至于应用的话,要根据具体的情况具体的对待的,什么时候该用什么才好是要看具体的问题的。
为了克服小波分解在高频段的频率分辨率较差,而在低频段的时间分辨率较差的缺点,人们在小波分解的基础上提出了小波包分解。小波包分解提高了信号的时频分辨率。是一种更精细的信号分析方法。小波包方法是小波分解的推广,它提供了更丰富的信号分析方法。小波包元素是由三个参数确定波形,分别是:位置、尺度和频率。对一个给定的正交小波函数,可以生成一组小波包基。每一个小波包基里提供一种特定的信号分析方法,它可以保存信号的能量并根据特征进行精确的重构。小波包可以对一个给定的信号进行大量不同的分解。 在正交小波分解过程中,一般是将低频系数分解为两部分。分解后得到一个近似系数向量和一个细节系数向量。在两个连续的近似系数中丢失的信息可以在细节系数中得到。下一步是将近似系数向量进一步分解为两个部分,而细节系数向量不再分解。 在小波包分解中,每一个细节系数向量也使用近似系数向量分解同样的分法分为两部分。因此它提供了更丰富的分析方法:在一维情况下,它产生一个完整的二叉树;在二维情况下,它产生一个完整的四叉树。

小波分析和小波包分析的区别是什么

4,什么是小波分析

小波分析 小波分析是目前数学中一个迅速发展的新领网域,它同时具有理论深刻和应用十分广泛的双重意义。 小波变换的概念是由法国从事石油信号处理的工程师J.Morlet在1974年首先提出的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的认可。正如1807年法国的热学工程师J.B.J.Fourier提出任一函数都能展开成三角函数的无穷级数的创新概念未能得到??名数学家J.L.Lagrange,P.S.Laplace以及A.M.Legendre的认可一样。幸运的是,早在七十年代,A.Calderon表示定理的发现、Hardy空间的原子分解和无条件基的深入研究为小波变换的诞生做了理论上的准备,而且J.O.Stromberg还构造了历史上非常类似於现在的小波基;1986年??名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的同意方法??多尺度分析之后,小波分析才开始蓬勃发展起来,其中比利时女数学家I.Daubechies撰写的《小波十讲(Ten Lectures on Wavelets)》对小波的普及起了重要的推动作用。它与Fourier变换、视窗Fourier变换(Gabor变换)相比,这是一个时间和频率的局网域变换,因而能有效的从信号中提取资讯,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了Fourier变换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上里程碑式的进展。 小波分析的应用是与小波分析的理论研究紧密地结合在一起地。现在,它已经在科技资讯产业领网域取得了令人瞩目的成就。 电子资讯技术是六大高新技术中重要的一个领网域,它的重要方面是影像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与影像处理可以统一看作是信号处理(影像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。现在,对於其性质随实践是稳定不变的信号,处理的理想工具仍然是傅立叶分析。但是在实际应用中的绝大多数信号是非稳定的,而特别适用於非稳定信号的工具就是小波分析。 事实上小波分析的应用领网域十分广泛,它包括:数学领网域的许多学科;信号分析、影像处理;量子力学、理论物理;军事电子对抗与武器的智能化;电脑分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用於数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在影像处理方面的影像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高解析度等。 (1)小波分析用於信号与影像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与影像的特征不变,且在传递中可以抗干扰。基於小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波网域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。 (2)小波在信号分析中的应用也十分广泛。它可以用於边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘侦测等。 (3)在工程技术等方面的应用。包括电脑视觉、电脑图形学、曲线设计、湍流、远端宇宙的研究与生物医学方面。

文章TAG:小波分析  分析  缺点  是什么  小波分析  
下一篇