人工智能的发展历程,人工智能发展的三个阶段分别有怎样的重要进步
来源:整理 编辑:智能门户 2023-08-21 14:50:42
本文目录一览
1,人工智能发展的三个阶段分别有怎样的重要进步
人工智能现状:人工智能在普通的模式识别、专家系统等方面正在不断发展,进步,比如语音识别、手写识别,都已经在普遍使用,谷歌的阿尔法狗更是在围棋领域超过人类冠军,自动驾驶也正在研发中。但是人工智能系统还是需要人类专家大量的工作,目前还没有成熟的人工智能系统,可以通过自己学习,修改自己的算法,程序以提升自我,人工智能可以说是处于2岁小孩的智力阶段。1. 人工智能就其本质而言,是对人的思维的信息过程的模拟。2. 对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。3. 弱人工智能如今不断地迅猛发展,尤其是2008年经济危机后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。4. 而强人工智能则暂时处于瓶颈,还需要科学家们和人类的努力。
2,人工智能历史上的三次黄金时代是什么这次有何不同
“人工智能”一词最初是在1956 年dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(artificial intelligence),英文缩写为ai。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。弱人工智能如今不断地迅猛发展,尤其是2008年经济危机后,美日欧希望借机器人等实现再工业化,工业机器人以比以往任何时候更快的速度发展,更加带动了弱人工智能和相关领域产业的不断突破,很多必须用人来做的工作如今已经能用机器人实现。而强人工智能则暂时处于瓶颈,还需要科学家们和人类的努力。
3,人工智能的演进
第一阶段:50年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序LISP表处理语言等。但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(InternationalJointConferencesonArtificialIntelligence即IJCAI)。第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展日本1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。第四阶段:80年代末,神经网络飞速发展1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。第五阶段:90年代,人工智能出现新的研究高潮由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
4,AKU人工智能的起源
人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门由计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性新学科。自问世以来AI经过波波折折,但终于作为一门边缘新学科得到世界的承认并且日益引起人们的兴趣和关注。不仅许多其他学科开始引入或借用AI技术,而且AI中的专家系统、自然语言处理和图象识别已成为新兴的知识产业的三大突破口。 人工智能的思想萌芽可以追溯到十七世纪的巴斯卡和莱布尼茨,他们较早萌生了有智能的机器的想法。十九世纪,英国数学家布尔和德o摩尔根提出了“思维定律“,这些可谓是人工智能的开端。十九世纪二十年代,英国科学家巴贝奇设计了第一架“计算机器“,它被认为是计算机硬件,也是人工智能硬件的前身。电子计算机的问世,使人工智能的研究真正成为可能。 作为一门学科,人工智能于1956年问世,是由“人工智能之父“McCarthy及一批数学家、信息学家、心理学家、神经生理学家、计算机科学家在Dartmouth大学召开的会议上,首次提出。对人工智能的研究,由于研究角度的不同,形成了不同的研究学派。这就是:符号主义学派、连接主义学派和行为主义学派。 传统人工智能是符号主义,它以Newell和Simon提出的物理符号系统假设为基础。物理符号系统是由一组符号实体组成,它们都是物理模式,可在符号结构的实体中作为组成成分出现,可通过各种操作生成其它符号结构。物理符号系统假设认为:物理符号系统是智能行为的充分和必要条件。主要工作是“通用问题求解程序“(General Problem Solver, GPS):通过抽象,将一个现实系统变成一个符号系统,基于此符号系统,使用动态搜索方法求解问题。 连接主义学派是从人的大脑神经系统结构出发,研究非程序的、适应性的、大脑风格的信息处理的本质和能力,研究大量简单的神经元的集团信息处理能力及其动态行为。人们也称之为神经计算。研究重点是侧重于模拟和实现人的认识过程中的感觉、知觉过程、形象思维、分布式记忆和自学习、自组织过程。 行为主义学派是从行为心理学出发,认为智能只是在与环境的交互作用中表现出来。
5,求初识人工智能相关论文资料
关于人工智能的定义众说不一。美国 斯坦福大学人工智能研究中心尼尔逊教授 下过这样一个定义:“人工智能是关于知识 的学科——怎样表示知识以及怎样获得知 识并使用知识的科学 。” 而麻省理工学院 的温斯顿教授认为:“人工智能就是研究如 何使计算机去做过去只有人才能做的智能 工作。”人们普遍认为人工智能(Artificial Intelligence),英文缩写为 AI,也称机器智 能。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系 统的一门新的技术科学。它是从计算机应 用系统的角度出发 , 研究如何制造出人造 的智能机器或智能系统 , 来模拟人类智能 活动的能力, 以延伸人们智能的科学。 人工智能就其本质而言 , 是对人的思 维的信息过程的模拟。人工智能不是人的 智能 , 更不会超过人的智能。 对于人的思 维模拟可以从两条道路进行, 一是结构模 拟 , 仿照人脑的结构机制 , 制造出 “类人 脑”的机器;二是功能模拟,暂时撇开人脑 的内部结构, 而从其功能过程进行模拟。 人工智能可以分为强人工智能和弱人 工智能。强人工智能观点认为有可能制造 出真正能推理 (Reasoning) 和解决问题 (Problem solving)的智能机器,并且,这样的 机器能将被认为是有知觉的, 有自我意识 的。弱人工智能观点认为不可能制造出能 真正地推理和解决问题的智能机器 , 这些 机器只不过看起来像是智能的 , 但并不真 正拥有智能 , 也不会有自主意识。 人工智 能的研究经历了以下几个阶段: 第一阶段:20 世纪 50 年代人工智能的兴 起和冷落。人工智能概念首次提出后,出现了 一批显著的成果,如机器定理证明、跳棋程序、 LISP 表处理语言等。但由于解法推理能力有 限,以及机器翻译失败等,使人工智能走入低 谷。这一阶段的特点是:重视问题求解的方 法,忽视知识重要性。第二阶段:20 世纪 60 年代末到 70 年代,专 家系统出现使人工智能研究出现新高潮。 DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究 和开发,将人工智能引向了实用化。1969 年成立了国际人工智能联合会议(IJCAI)。 第三阶段:20 世纪 80 年代,随着第五代计 算机的研制,人工智能得到了很大发展。日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使 逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。 第四阶段:20 世纪 80 年代末,神经网络飞 速发展。1987 年,美国召开第一次神经网络 国际会议,宣告了这一新学科的诞生。此后, 各国在神经网络方面的投资逐渐增加,神经网 络迅速发展起来。 第五阶段:20 世纪 90 年代,人工智能出现 新的研究高潮。由于网络技术特别是国际互 连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问 题求解,而且研究多个智能主体的多目标问题求解,将人工智能面向实用。人工智能研究范畴有自然语言处理 , 知识表现,智能搜索,推理,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人 工生命,神经网络,复杂系统等。目前,人工智能是与具体领域相结合进行研究的,有如下领域:(1)专家系统。依靠人 类已有的知识建立起来的知识系统,目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域。(2)机器学习。主要在三 个方面进行:一是研究人类学习的机理、人 脑思维的过程;二是机器学习的方法;三是建立针对具体任务的学习系统。(3)模式识别。研究如何使机器具有感知能力,主要研究视觉 模式和听觉模式的识别。(4)理解自然语言。计算机如能“听懂”人的语言,便可以直接用口语操作计算机,这将给人们带极大的便 利。(5)机器人学。机器人是一种能模拟人的行为的机械,对它的研究经历了三代发展过程:第一代(程序控制)机器人:这种机器人只能刻板地按程序完成工作,环境稍有变化就会出问题,甚至发生危险。第二代(自适应)机器人:这种机器人配备有相应的感觉传感器, 能取得作业环境、操作对象等简单的信息,并由机器人体内的计算机进行分析处理,控制机器人的动作。第三代(智能)机器人:智能机 器人具有类似人的智能,它装备了高灵敏度传感器,因而具有超过人的视觉、听觉、www.homelunwen.com 、嗅觉、触觉的能力,能对感知的信息进行分析,控制自 己的行为,处理环境发生的变化,完成各种复杂的任务。而且有自我学习、归纳、总结、提高已掌握知识的能力。(6)智能决策支持系统。20 世纪 80 年代以来专家系统在许多方面取得 成功,将人工智能中特别是智能和知识处理技术应用于决策支持系统,扩大了决策支持系统 的应用范围,提高了系统解决问题的能力,这就成为智能决策支持系统。(7)人工神经网络。在研究人脑的奥秘中得到启发,试图用大量的 处理单元模仿人脑神经系统工程结构和工作机理。
6,人工智能的发展怎么样
人工智能是计算机科学的一个分支,英文缩写为AI(Artificial Intelligence)。人工智能的目的在于尝试使用计算机技术生产出与人类智能相似的智能机器,包括但不仅限于人工智能机器人、语言识别、图像识别等系统。人工智能的智能表现在对人的思维过程的模拟,但是人的思维过程并不简单,它包括识别、分析、比较、概括、判断、推理等等步骤,是一个复杂且高级的认识过程,因此人工智能是一门非常具有挑战性的科学。人工智能的概念大约诞生在20世纪50年代,到如今仅仅经历了60余年的发展之路,是一项非常高新的技术,被誉为二十一世纪三大尖端技术之一。人工智能虽然说是一门计算机科学的分支,但它在发展过程中还涉及到了心理学、哲学和语言学等学科,有学者甚至认为人工智能的发展几乎需要涉及自然科学和社会科学的所有学科,其范围远远超出计算机科学的范畴。我们可以把人工智能简单的拆开成“人工”与“智能”两个方面来理解,“人工”很简单,即人为制造的,那么“智能”是什么呢?智能从字面含义上来讲,就是智力与能力的合体。我们知道,人类可以通过学习与实践发展自己的智力与能力。也因此,人工智能在发展过程中,其核心问题就是如何帮助机器拥有推理、知识、规划、学习、交流、感知、移动和操作物体的等能力,并尝试构建出智力。依托于计算机技术的先天优势,学习知识对于人工智能而言可以说只是时间和存储空间的问题。自动化技术的发展,让人工智能拥有了移动与操作物体的能力。智能算法的发展,让人工智能在一定程度上也拥有了推理与交流的能力。人工智能与计算机的发展是分不开的。有学者总结,人工智能发展会面临着六大瓶颈,分别是数据瓶颈、泛化瓶颈、能耗瓶颈、语义鸿沟瓶颈、可解释性瓶颈和可靠性瓶颈。数据瓶颈是指“由于数据收集能力的不足、理论无偏性和数据随机性等条件的限制而导致数据失真、缺乏等数据缺陷。”我们简单的套在人工智能上来看,收集数据能力的不足可以理解成识别技术的不成熟,理论无偏性可以理解成获取数据的质量,数据随机性的限制可以理解成获取及处理数据的难易度。随着大数据技术的发展,人工智能已在数据方面取得了比较明显的进步。不过,目前人工智能的发展仍未完全突破数据瓶颈的问题,训练数据的增大对人工智能算法的提升效果仍然不够理想。泛化瓶颈是指人工智能在泛化能力提升上所遇到的困难。泛化能力是指“机器学习算法对新鲜样本的适应能力。”你可以将人工智能的泛化能力简单理解成自主学习能力与适应能力。通常来说,人工智能的各项能力,都需要通过大量的样本数据训练及算法规定来获得。在实验室的环境下,很多人工智能的各项能力均有不错表现。但是实际生活照比实验室环境而言,存在太多的不确定性,因此人工智能要想更好的落地,就需要拥有强大的泛化能力,以在应对突发情况及未知情况时能够给出合理的响应,更好的帮助人类。能耗瓶颈可以简单的理解为人工智能在应用等过程中所消耗能源大于它实际所产生的效益,即能耗成本过高。而在优化人工智能能耗问题的过程中,首当其冲的就是对算法的优化。就像人体的大脑大概只占体重的2%,但是却能占据人体总能耗的20%一样,算法对于人工智能能耗的影响也非常的大。随着智能算法的发展,人工智能在能耗瓶颈上也有所进步。例如奥地利科技学院、维也纳工业大学和麻省理工学院的研究者就成功训练了一种能够控制自动驾驶汽车的低能耗智能算法,这一算法仅仅使用了75000个参数与19个神经元,比之前减少了数万倍。语义鸿沟瓶颈是指人工智能缺乏真正的语言理解能力,无法根据上下文或常识理解一些容易产生歧义的语言,即听不懂“人话”。目前,人工智能在这一点上仍然没有显著的突破。可解释性瓶颈是指人工智能过于依赖模型中已有的数据,缺乏深层学习能力的缺陷。人工智能很容易学习一个东西是什么,但是很难明白一个东西究竟为什么会这样。如果人工智能不能理解知识或行为之间的深层逻辑,那么它在用已有模型去应对未知变量时,就很容易引起模型崩塌,类似于“死机”。目前,已有学者提出可以使用对抗网络与最优传输技术找到模型坍塌的原因,并提出改进模型,从几何映射的角度上尝试去突破人工智能的可解释问题,在理论上取得了一些进步。我们都遇到过电脑死机,这在一定程度上反映着可靠性|public domain可靠性瓶颈是指人工智能在系统可靠性上的不足。粗略来讲,可靠性主要包含设计可靠性、耐久性和可维修性三个方面。人工智能的设计可靠性可以简单的理解为它的算法是否可靠,它是否能在规定的条件下,完成预定的功能。例如自动汽车在行驶过程中,是否能够正确识别道路情况,并作出合理反应,很大程度上都要依靠自动驾驶系统的设计可靠性。耐久性和可维修性很简单,即能不能长久使用与能不能、方便不方便维修,维修的成本如何。现阶段的人工智能仍然存在很大的局限性,市面上应用的人工智能绝大多数为弱人工智能,而强人工智能的发展仍然存在很多的难题。但是不管人工智能在未来有多少难关需要克服,可以肯定的是,科技的发展会不断推动人工智能的发展,让人工智能可以帮助更多产业、更多市场主体中实现新的赋能与转型,最终完成为数字经济集约化发展提供不竭动力的光荣使命,为我们的美好未来添砖加瓦。人工智能工程技术人员是指从事与人工智能相关算法、深度学习等相关的多种技术的分析、研究、开发,并对人工智能系统进行设计、优化、运维、管理和应用的工程技术人员。人工智能专业就业方向有科学研究、工程开发、计算机方向、软件工程、应用数学、电气自动化通信、机械制造等。人工智能是国家战略的核心方向,影响着国民经济的很多领域,已成为一个国家科技发展水平和国民经济现代化、信息化的重要标志。
文章TAG:
人工 人工智能 智能 发展 人工智能的发展历程