本文目录一览

1,消弧线圈用在哪儿

消弧线圈主要用于大型用电企业,像煤矿、钢铁厂、铁路、变电站、光伏电站、发电厂、造纸厂、水泥厂、化工厂、风电场等厂矿企业。
消弧线圈一端接在变压器中性点,另一端接地。

消弧线圈用在哪儿

2,简述消弧线圈的作用在什么情况下需加装消弧线圈

接在中性点与地之间的铁芯有气隙的电感线圈,其作用是补偿电力系统单相接地电流及减缓接地故障点恢复电压的上升速度,从而增大接地故障点自动熄弧的概率。当3~10kV电网单相接地电流大于30A;35~66kV电网单相接地电流大于10A;或发电机单相接地电流大于5A时应当在中性点安装消弧线圈,对电容电流进行补偿。

简述消弧线圈的作用在什么情况下需加装消弧线圈

3,消弧线圈有什么作用

补偿系统单相接地是的电容电流,如果对地电容电流太大,接地时电弧难以熄灭,容易造成事故,因此需要在变压器中性点加消弧线圈,用感性电流抵消容性电流
消弧线圈的作用 电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接地而形成的电容电流,使得接地电流减小,同时使得故障相恢复电压速度减小,治理电容电流过大所造成的危害。同时由于消弧线圈的嵌位作用,它可以有效的防止铁磁谐振过电压的产生。消弧线圈补偿效果越好,对电网的安全保护作用越大,所以需要跟踪电容电流变化自动调谐的消弧线圈。 消弧线圈作用原理及国内外现状 消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。所谓正确调谐,即电感电流接地或等于电容电流,工程上用脱谐度v来描述调谐程度 v=(ic-il)/ic 当v=0时,称为全补偿,当v

消弧线圈有什么作用

4,简述消弧线圈的工作原理要通俗点呀

消弧线圈的作用是当电网发生单相接地故障后,故障点流过电容电流,消弧线圈提供电感电流进行补偿,使故障点电流降至10A以下,有利于防止弧光过零后重燃,达到灭弧的目的,降低高幅值过电压出现的几率,防止事故进一步扩大。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。扩展资料:当系统采用过补偿方式时,流过故障线路的零序电流等于本线路对地电容电流和接地点残余电流之和,其方向和非故障线路的零序电流一样,仍然是由母线指向线路,且相位一致,因此也无法利用方向的不同来判别故障线路和非故障线路。其次由于过补偿度不大,因此也很难像中性点不接地系统那样,利用零序电流大小的不同来找出故障线路。同中性点不接地电网一样,故障相对地电压为零,非故障相对地电压升高至线电压,出现零序电压,其大于等于电网正常运行时的相电压,同时也有零序电流。消弧线圈两端的电压为零序电压,消弧线圈的电流通过接地故障点和故障线路的故障相,但不通过非故障线路。
消弧线圈能自动跟踪补偿电网电容电流,消除电网接地过电压及谐振过电压。
由于电缆和架空线接地时有电容电流,消弧线圈利用感性电流和容性电流的相位相差 180°,两者进行电流补偿,抵消电网接地时的电容电流,达到消弧的目的。用于变压器二次侧中性点,没有中性点的使用接地变压器(Z形联结)引出中性点。消弧线圈的调谐方式可分为预调式和随调式两种。依据消弧线圈电抗的调节方法,可分为电动有载调匝式、直流偏磁式、调气隙式、调容式、短路高阻抗变压器式等等。TST-XHTZ 调匝式消弧线圈自动跟踪接地补偿成套装置,结构组成:消弧线圈本体,有载开关(调节二次分接头),阻尼电阻(防止谐振);无中性点引出的系统需要接地变压器。TST-XHPC偏磁式消弧线圈,二次通直流改变磁导连续调节,无需阻尼电阻,没有谐振风险,随调预调均可;固定式(手动调分接头式)断电情况下可手动调节分接头必须过补偿防止谐振。TST-XHTR调容式,原理类似调匝式,利用阻抗这算原理,用二次侧(接触器或晶闸管)投入不同量电容的方式调节感性电流补偿量,也需阻尼电阻防止谐振。
消弧线圈是一个具有铁芯的可调电感线圈,一般接在变压器或发电机的中性点与大地之间。当系统发生单相接地故障时,可形成一个与接地电容电流方向相反的电感电流,电感电流对接地的电容电流起补偿作用,使其减少或接近于零,从而,消除了接地点的电弧,避免了危险。
可以私聊我~

5,消弧线圈是怎样来消弧的

你说的是中性点运行方式中中性点经消弧线圈接地系统吧发生单相接地故障时,接地电容电流过大就需要经消弧线圈接地。因为此时电路是个RC串联电路,有电容本来就增加电流,再加上RC电路会发生谐振,产生电弧。加入电感线圈就是为了中和电容电流,防止电谐振的产生,从而减小接地电流。
在变压器的分类中,没有消弧变压器这一说法,你说的消弧变压器可能是在变压器上并联消弧线圈起到消弧作用。 消弧线圈的作用: 一个电网的存在必然存在着漏电.从那里漏的电呢? 电缆对地的电容! 我们知道,我们采用的是50hz的频率.而且在传输的过程中是没有零线的,主要的目的是为了节约成本!代替零线的自然就是大地.三相点他们对大地的距离不一样也就是对大地的电容也不一样! 既然电容不一样,那么漏电流也不一样.漏掉的 电流跑到那里去了呢? 这要取决于那条线路距离大地最近.因为漏调的电流要跑到另外的线路中! 假如a失去电流,那么b或者c就得到电流!容性电流=a-b|a-c 线路越长容性电流就越大!容性电流越大,当发生接地的时候弧光就不容易熄灭!通过引入消弧线圈来保证整个变电站的接地时候的电流<5a就可以消灭接地弧光! 当然:引入消弧线圈后,变电站的系统有可能是过补(电感电流大于电容电流)或者是欠补(电感电流小于电容电流)但绝对不能相同(电感电流等于电容电流)!
太阳相随 说到了几个问题,但问题的关键没有回答的好 首先,所谓谐振电路就是纯阻性电路,回路种的电容电流和电感电流相互抵消后才能形成了谐振 消弧线圈一般应用于10KV中性点不接地系统中,因为10KV中性点不接地系统有个特殊性,就是发生单相接地的时候系统可以继续运行一段时间而不会跳闸。 这发生单相弧光接地的电流就是容性电流,如果容性电流的电弧很大不及时熄灭的话就有可能发生相间短路扩大事故范围,发生跳闸。 所以在这个情况下我们需要加消弧线圈,在系统发生单性弧光接地的时候给系统一个电感电流来综合掉这个接地的电容电流,让电容电流变小,从而这个弧光可以迅速熄灭,不再扩大事故范围。 如果你不清楚为什么加消弧线圈的电感电流就可以综合掉电容电流,那么我就从原理上讲给你听,你也可以画图看看,首先我们在X轴上标电阻电压和电流(电阻的电压和电流是同相位的),电容负载,电流相位超前电压相位90度,电感负载,电压相位超前电流相位90度,那么将电容负载和电感负载的电压和电阻取同一个相位,这个时候你看他们的电流相位正好相反,所以电感电流可以综合掉电容电流。(但电感电流千万不可以将电容电流完全抵消,因为完全抵消后回路中就成了纯阻性,那么就真的发生谐振了,后果会很严重的)

6,什么是消弧线圈

消弧线圈的作用   电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接地而形成的电容电流,使得接地电流减小,同时使得故障相恢复电压速度减小,治理电容电流过大所造成的危害。同时由于消弧线圈的嵌位作用,它可以有效的防止铁磁谐振过电压的产生。消弧线圈补偿效果越好,对电网的安全保护作用越大,所以需要跟踪电容电流变化自动调谐的消弧线圈。 消弧线圈作用原理及国内外现状   消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。所谓正确调谐,即电感电流接地或等于电容电流,工程上用脱谐度V来描述调谐程度   V=(IC-IL)/IC   当V=0时,称为全补偿,当V>0时为欠补偿,V<0时为过补偿。从发挥消弧线圈的作用上来看,脱谐度的绝对值越小越好,最好是处于全补偿状态,即调至谐振点上。但是在电网正常运行时,小脱谐度的消弧线圈将产生各种谐振过电压。如煤矿6KV电网,当消弧线圈处于全补偿状态时,电网正常稳态运行情况下其中性点位移电压是未补偿电网的10~25倍,这就是通常所说的串联谐振过电压。除此之外,电网的各种操作(如大电机的投入,断路器的非同期合闸等)都可能产生危险的过电压,所以电网正常运行时,或发生单相接地故障以外的其它故障时,小脱谐度的消弧线圈给电网带来的不是安全因素而是危害。综上所述,当电网未发生单相接地故障时,希望消弧线圈的脱谐度越大越好,最好是退出运行。   3.1补偿系统的分类   早期采用人工调匝式固定补偿的消弧线圈,称为固定补偿系统。固定补偿系统的工作方式是:将消弧线圈整定在过补偿状态,其过补程度的大小取决于电网正常稳态运行时不使中性点位移电压超过相电压的15%,之所以采用过补偿是为了避免电网切除部分线路时发生危险的串联谐振过电压。因为如整定在欠补偿状态,切除线路将造成电容电流减少,可能出现全补偿或接近全补偿的情况。但是这种装置运行在过补偿状态当电网中发生了事故跳闸或重合等参数变化时脱谐度无法控制,以致往往运行在不允许的脱谐度下,造成中性点过电压,三相电压对称遭到破坏。可见固定补偿方式很难适应变动比较频繁的电网,这种系统已逐渐不再使用。取代它的是跟踪电网电容电流自动调谐的装置,这类装置又分为两种,一种称之为随动式补偿系统。随动式补偿系统的工作方式是:自动跟踪电网电容电流的变化,随时调整消弧线圈,使其保持在谐振点上,在消弧线圈中串一电阻,增加电网阻尼率,将谐振过电压限制在允许的范围内。当电网发生单相接地故障后,控制系统将电阻短接掉,达到最佳补偿效果,该系统的消弧线圈不能带高压调整。另一种称之为动态补偿系统。动态补偿系统的工作方式是:在电网正常运行时,调整消弧线圈远离谐振点,彻底避免串联谐振过电压和各种谐振过电压产生的可能性,当电网发生单相接地后,瞬间调整消弧线圈到最佳状态,使接地电弧自动熄灭。这种系统要求消弧线圈能带高电压快速调整,从根本上避免了串联谐振产生的可能性,通过适当的控制,该系统是唯一可能使电网中原有功率方向型单相接地选线装置继续使用的系统。   3.2国内主要产品比较   目前,自动补偿的消弧线圈国内主要有三种产品,分别是调气隙式,调匝式及偏磁式。 调气隙式   调气隙式属于随动式补偿系统。其消弧线圈属于动芯式结构,通过移动铁芯改变磁路磁阻达到连续调节电感的目的。然而其调整只能在低电压或无电压情况下进行,其电感调整范围上下限之比为2.5倍。控制系统的电网正常运行情况下将消弧线圈调整至全补偿附近,将约100欧电阻串联在消弧线圈上。用来限制串联谐振过电压,使稳态过电压数值在允许范围内(中性点电位升高小于15%的相电压)。当发生单相接地后,必须在0.2S内将电阻短接实现最佳补偿,否则电阻有爆炸的危险。该产品的主要缺点主要有四条: 工作噪音大,可靠性差   动芯式消弧线圈由于其结构有上下运动部件,当高电压实施其上后,振动噪音很大,而且随着使用时间的增长,内部越来越松动,噪音越来越大。串联电阻约3KW,100MΩ。当补偿电流为50A时,需要250KW容量的电阻才能长期工作,所以在接地后,必须迅速切除电阻,否则有爆炸的危险。这就影响到整个装置的可靠性。 调节精度差   由于气隙微小的变化都能造成电感较大的变化,电机通过机械部件调气隙的精度远远不够。用液压调节成本太高 过电压水平高   在电网正常运行时,消弧线圈处于全补偿状态或接近全补偿状态,虽有串联谐振电阻将稳态谐振过电压限制在允许范围内,但是电网中的各种扰动(大电机投切,非同期合闸,非全相合闸等),使得其瞬态过电压危害较为严重。 功率方向型单相接地选线装置不能继续使用   安装该产品后,电网中原有的功率方向型单相接地选线装置不能继续使用 调匝式   该装置属于随动式补偿系统,它同调气隙式的唯一区别是动芯式消弧线圈用有载调匝式消弧线圈取代,这种消弧线圈是用原先的人工调匝消弧线圈改造而成,即采用有载调节开关改变工作绕组的匝数,达到调节电感的目的。其工作方式同调气隙式完全相同,也是采用串联电阻限制谐振过电压。该装置同调气隙式相比,消除了消弧线圈的高噪音,但是却牺牲了补偿效果,消弧线圈不能连续调节,只能离散的分档调节,补偿效果差,并且同样具有过电压水平高,电网中原有方向型接地选线装置不能使用及串联的电阻存在爆炸的危险等缺点,另外该装置比较零乱,它由四部分设备组成(接地变压器,消弧线圈、电阻箱、控制柜),安装施工比较复杂。 偏磁式 消弧线圈结构的特点   电控无级连续可调消弧线圈,全静态结构,内部无任何运动部件,无触点,调节范围大,可靠性高,调节速度快。这种线圈的基本工作原理是利用施加直流励磁电流,改变铁芯的磁阻,从而改变消弧线圈电抗值的目的,它可以带高压以毫秒级的速度调节电感值。 控制方式的特点   采用动态补偿方式,从根本上解决了补偿系统串联谐振过电压与最佳补偿之间相互矛盾的问题。众所周知,消弧线圈在高压电网正常运行时无任何好处,如果这时调谐到全补偿或接近全补偿状态,会出现串联谐振过电压使中性点电压升高,电网中各种正常操作及单相接地以外的各种故障的发生都可能产生危险的过电压。所以电网正常运行时,调节消弧线圈使其跟踪电网电容电流的变化有害无利,这也就是电力部门规定“固定式消弧线圈不能工作在全补偿或接近全补偿状态”的原因。国内同类自动补偿装置均是随动系统,都是在电网尚未发生接地故障前即将消弧线圈调节到全补偿状态等待接地故障的发生,这了避免出现过高的串联谐振过电压而在消弧线圈上串联一阻尼电阻,将稳态谐振过电压限制到容许的范围内,并不能解决暂态谐振过电压的问题,另外由于电阻的功率限制,在出现接地故障后必须迅速的切除,这无疑给电网增加了一个不安全因素。偏磁式消弧线圈不是采用限制串联谐振过电压的方法,而是采用避开谐振点的动态补偿方法,根本不让串联谐振出现,即在电网正常运行时,不施加励磁电流,将消弧线圈调谐到远离谐振点的状态,但实时检测电网电容电流的大小,当电网发生单相接地后,瞬时(约20ms)调节消弧线圈实施最佳补偿。

文章TAG:消弧线圈  线圈  在哪  哪儿  消弧线圈  
下一篇